Contents

1 Introduction to “Stopping Climate Change: The Case for Coal and Hydrogen” 1
 1.1 Climate Change Threats to Society 2
 1.1.1 Population Growth 3
 1.1.2 Increased Meat Consumption 3
 1.1.3 Bio-Fuels 4
 1.2 Fuel Sources .. 5
 1.2.1 Coal as an Energy Source 5
 1.3 Hydrogen as an Energy Carrier for Fuel Cell Electric Vehicles .. 6
 1.4 Hydrogen as an Enabler of Greater Use of Intermittent Renewables ... 6
 1.5 Hydrogen from Coal 7
 1.6 Water Requirements for Hydrogen Generation 8
 1.7 Water Requirements for Agriculture 8

References ... 8

2 Greenhouse Gases by Sector 9
 2.1 Greenhouse Gas Emissions by Sector 9
 2.2 Electricity Projections 10

Reference ... 11

3 Net Greenhouse Gas Reductions Required by Sector 13
 3.2 Recommended GHG Reductions by Sector 14

References ... 17

4 Electricity Generator Costs and Greenhouse Gas Emissions 19
 4.1 Introduction .. 19
 4.2 Business as Usual Pathway 20

ix
7 Tri-Generation at Big Box Stores and Warehouses

7.1 Fuel Cell Fork Lift Trucks
7.2 Tri-Gen System Description
7.3 Results and Discussion
7.4 State Electricity Rates
7.5 State Natural Gas Prices
7.6 State Gasoline Prices
7.7 Rates of Return with Fork Lift Trucks and Fuel Cell Electric Vehicles
7.8 Rates of Return with Fuel Cell Delivery Trucks
7.9 Big Box Store Energy Consumption
7.10 Tri-Gen System Capital Cost Estimates
7.10.1 Stationary Fuel Cell System Cost
7.10.2 Steam Methane Reformer
7.10.3 Hydrogen Cascade Storage
7.10.4 Hydrogen Refrigeration
7.10.5 700-Bar Compression
7.10.6 CSD Controls and Safety
7.10.7 Dispenser
7.10.8 Other Capital Costs
7.11 Summary Station Costs
7.11.1 Cash Flow Chart

8 Economics of Hydrogen and Electricity Co-generation at IGCC Plants

8.1 Introduction
8.2 Capital Costs of Electricity and Hydrogen Co-generation at IGCC+CCS Plants
8.3 Capital Cost of Liquid Hydrogen Production
8.4 Potential FCEV Markets in California and Hawaii
8.5 Hydrogen Consumed by FCEVs
8.6 Setting the Price of Hydrogen
8.7 Liquid Hydrogen Fueling Station Cost
8.8 Impact of Carbon Tax on IGCC+CCS Electricity Margin
8.9 Return on Investment for IGCC+CCS Plants

9 Solar-Hydrogen Generation Systems

9.1 PV System Sizing
9.2 PV System Costs
9.3 PEM Fuel Cell Costs
9.4 Electrolyzer System Costs
9.5 Operation and Maintenance (O&M) Costs
9.6 Geologic Storage Costs
10 Water Consumption 107
10.1 Global Water Resources 107
10.2 Water Requirements for Electricity Production 107
 10.2.1 Water Withdrawals Versus Water Consumption 107
 10.2.2 Water Use Versus Generator Type 108
 10.2.3 Water Use Versus Cooling Method 109
 10.2.4 Water Use with and Without Carbon Capture
 and Storage .. 109
10.3 Water Requirements for Hydrogen Production 110
10.4 Water Reduction Potential with Hydrogen and Coal 113
 10.4.1 Water Reduction in Electricity Production 113
 10.4.2 Water Reduction in Transportation Fuel 113
 10.4.3 Summary of Water Savings 116
References ... 117
11 Coal Mine Safety 119
11.1 The Dangers of Coal Mining 119
11.2 The Military Dangers of Protecting Our Sources of Petroleum .. 120
11.3 Black Lung Disease 121
References ... 121
12 Conclusions: “Stopping Climate Change:
The Case for Coal and Hydrogen” 123
Appendix A: The Economics of IGCC plants with Carbon Capture and Storage 127
Index .. 137
Stopping Climate Change: the Case for Hydrogen and Coal
Thomas, C.E.S.
2017, XIV, 137 p. 48 illus., 44 illus. in color., Hardcover
ISBN: 978-3-319-31654-3