Contents

1 The Fluid Dynamics Adventure, from Newton to Stokes via Cauchy, Euler, Navier, Poisson, and Fourier 1
 1.1 From Newton’s Fundamental Equation to the Cauchy Stress Principle and the Macroscopic Equations of Continuum Mechanics .. 1
 1.2 Euler Non-viscous Equations and Navier Viscous Incompressible Equations .. 5
 1.2.1 Euler Non-viscous Case .. 5
 1.2.2 Navier Viscous Incompressible Case 12
 1.3 Stokes’ Concept of Fluidity: Cauchy-Poisson and Fourier Constitutive Laws ... 15
 1.3.1 Stokes’ Four Postulates 16
 1.3.2 Cauchy-Poisson Law for the Cauchy Stress Tensor 17
 1.3.3 Fourier Law for the Heat Flux Vector 18
 1.4 Some Remarks ... 18
References ... 26

Part I Classical Analytical-Asymptotics Newtonian NSF Fluid Dynamics

2 Formulation of Some NSF Unsteady Initial-Boundary Value Problems ... 29
 2.1 The Case of a Thermally Perfect Gas: Typical NSF Equations 30
 2.2 The Case of an Expansible Liquid .. 31
 2.3 Navier-Stokes (NS) Barotropic Compressible Equations 32
 2.4 The Case of Nonlinear Acoustics ... 33
 2.5 Initial-Boundary Value Problem for the Typical NSF Equations 35
 2.6 The Rotating Earth and Its Atmosphere as a Continuum 37
 2.6.1 The Rotating Earth ... 38
 2.6.2 The Atmosphere as a Continuum 40
 2.6.3 Shallow Boussinesq Equations 42
 2.6.4 Deep Equations “à la Zeytounian” 44
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.3</td>
<td>Meteo-fluid Dynamics Models, and Fig. 6.3</td>
<td>123</td>
</tr>
<tr>
<td>6.4</td>
<td>The Three Significant Models of the Bénard Problem and Figs. 6.4 and 6.5</td>
<td>125</td>
</tr>
<tr>
<td>7</td>
<td>Some Concluding Remarks About Part II</td>
<td>133</td>
</tr>
<tr>
<td>7.1</td>
<td>Low Reynolds Number Case</td>
<td>133</td>
</tr>
<tr>
<td>7.2</td>
<td>Low Mach Number Case</td>
<td>133</td>
</tr>
<tr>
<td>7.3</td>
<td>Triple-Deck Model</td>
<td>134</td>
</tr>
<tr>
<td>7.4</td>
<td>Couette-Taylor Problem</td>
<td>136</td>
</tr>
<tr>
<td>7.5</td>
<td>Meteo–Fluid Dynamics</td>
<td>137</td>
</tr>
<tr>
<td>7.6</td>
<td>Some Complementary Remarks</td>
<td>139</td>
</tr>
<tr>
<td></td>
<td>Reference</td>
<td>140</td>
</tr>
<tr>
<td>Part III</td>
<td>Miscellaneous: Various Fluid Dynamics Workings Models</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Some Applications of the RAM Approach During the Years 1974–2014</td>
<td>143</td>
</tr>
<tr>
<td>8.1</td>
<td>Introduction</td>
<td>143</td>
</tr>
<tr>
<td>8.2</td>
<td>Turbomachinery Homogenized Flows</td>
<td>148</td>
</tr>
<tr>
<td>8.3</td>
<td>Asymptotic Modelling of Rolled-Up Vortex Sheets</td>
<td>154</td>
</tr>
<tr>
<td>8.4</td>
<td>Long Nonlinear Surface Waves on Water and Soliton</td>
<td>160</td>
</tr>
<tr>
<td>8.5</td>
<td>Pivotal Dimensionless Problem and the 2D Single Equation à la Boussinesq</td>
<td>161</td>
</tr>
<tr>
<td></td>
<td>Solitary and Cnoidal Waves</td>
<td>162</td>
</tr>
<tr>
<td>8.6</td>
<td>KdV and KP Equations for Weakly Nonlinear Long Waves in Shallow Water</td>
<td>163</td>
</tr>
<tr>
<td>8.7</td>
<td>Nonlinear Schrödinger (NLS) Equations and Schrödinger-Poisson (NLS-P) Equations</td>
<td>166</td>
</tr>
<tr>
<td>8.8</td>
<td>Some Final Remarks</td>
<td>168</td>
</tr>
</tbody>
</table>
8.5 Some Singular Aspects of the Blasius Bl Problem Asymptotics
of the Blasius Bl Steady Incompressible 2D Problem 169
8.5.1 Formulation of a Steady Compressible 2D Viscous
Blasius Bl Problem ... 170
8.5.2 Limit Euler (Outer) Equations for \((M_\infty)^2 \to 0, \)
with \(x\) and \(y\) Fixed ... 171
8.5.3 Limit Prandtl (Inner) Equations for \((M_\infty)^2 \to 0, \)
with \(x\) and \(\eta = y/(M_\infty)^2\) Fixed 171
8.5.4 Flow Due to Displacement Thickness 172
8.5.5 Limit BL 2D Steady Equations Due to a Slight
Compressibility Effect ... 172
8.6 A Theory for Lee Waves Downstream of a Mountain 174
8.6.1 2D Steady Model Equations for Lee Waves 174
8.6.2 Isochoric Case ... 175
8.6.3 Boussinesq Case .. 176
8.6.4 From the Isochoric Case to the Boussinesq Case 177
8.6.5 Some Results Concerning the Problem (8.44b)–(8.44c) 177
8.6.6 Models for Steady 2D Non-viscous Lee Waves
in a Baroclinic Compressible Troposphere 181
8.6.7 Four Limiting Cases 186
8.7 A Model Problem for a Local Thermal Spot Effect 187
8.7.1 Dimensionless Local Problem 187
8.7.2 Triple Deck Structure 189
8.7.3 Analysis of the Three Regions 190
8.8 Flow of a Thin Film Over a Rotating Disk 193
8.8.1 A Mathematical Formulation 195
8.8.2 The Reduced Initial Boundary-Value Problem à la von
Karman .. 196
8.8.3 Dimensionless RAM Approach 196
8.8.4 Outer Long Time Scale Limit: \(Re \to 0\) with \(\tau\)
and \(\xi\) Fixed Zero-Order Outer Problem 197
8.8.5 First-Order Outer Problem 198
8.8.6 Inner Short Time Scale Analysis 198
8.8.7 Zero-Order Local Short Time Scale Problem 198
8.8.8 Complementary Remarks 199
8.9 The KZK–Parabolic Single Model Equation in Nonlinear
Acoustics ... 200
8.9.1 The RAM Approach 201
8.9.2 Leading Order System for \(U_0\) in the Simplistic Tentative
Expansion (8.78f) .. 202
8.9.3 Second-Order System for \(U_1\) 203
8.9.4 The Compatibility-Non-Secularity Condition 204
8.9.5 KZK Equation ... 204
References ... 205
9 Some Concluding Remarks about Part III .. 207
 9.1 RAM Approach ... 207
 9.2 Hydrodynamic Stability Theory 208
 9.3 Bénard Thermal Convection .. 209
 9.4 Anelastic (Deep) Equations .. 209
 9.5 Small-Mach-Number Time-Dependent NSF Models 213
 9.6 Analysis of Through-Flow Equations 215
 References .. 217

Epilogue .. 219

Index .. 223
Challenges in Fluid Dynamics
A New Approach
Zeytounian, R.K.
2017, XXVI, 230 p. 38 illus., Hardcover
ISBN: 978-3-319-31618-5