
Distributed Multi-user, Multi-key Searchable
Encryptions Resilient Fault Tolerance

Huafei Zhu(B)

School of Computer and Computing Science, Zhejaing University City College,
Hangzhou 310015, China

zhuhf@zucc.edu.cn

Abstract. In this paper, a construction of distributed multi-user, multi-
key searchable encryptions is proposed and analyzed. Our scheme lever-
ages a combination of the Shamir’s threshold secret key sharing, the
Pohlig-Hellman function and the ElGamal encryption scheme to provide
high reliability with limited storage overhead. It achieves the seman-
tic security in the context of the keyword hiding, the search token hid-
ing and the data hiding under the joint assumptions that the decisional
Diffie-Hellman problem is hard and the pseudo-random number genera-
tor deployed is cryptographically strong.

Keywords: ElGamal encryption scheme · Pohlig-Hellman function ·
Searchable encryptions · Shamir’s threshold secret key sharing

1 Introduction

Often, different users possess data of mutual interest. The most challenging
aspect of the data exchange lies in supporting of the data sharing over the
encrypted database [12,18,28,32]. Searchable encryption is such a cryptographic
primitive allowing for the keyword based content sharing managed and main-
tained by individual users. The state of the art research on searchable encryptions
can be classified as the following two categories:

– Different data items (or documents, we do not distinguish the notion of
data with that of the document throughout the paper as two nations are
interactively used in many references cited here) outsourced are encrypted
by a single key. The private information retrieval line of work [4,8,11,20]
and the oblivious transfer line of work [25] fall in this category. Most of
the research on searchable encryptions focused on the case when data is
encrypted with same key [3,5,7,10,13,15,28,29,32] and more efficient solu-
tions [1,9,19,21,24,26,27,30,31] have been proposed in recent years. The idea
behind these constructions is that − to access a database, individually autho-
rized user is issued a query key by the data owner and only the authorized users
who have valid query keys can generate valid access queries which enable the
database management server to process users’ search queries without learn-
ing the keywords contained in the queries and the contents of the encrypted
records.

c© Springer International Publishing Switzerland 2016
M. Yung et al. (Eds.): INTRUST 2015, LNCS 9565, pp. 17–31, 2016.
DOI: 10.1007/978-3-319-31550-8 2

18 H. Zhu

– Different data outsourced are encrypted with different keys. This problem was
first studied by López-Alt et al. [17] leveraging the concept of fully homomor-
phic encryption schemes in which anyone can evaluate a function over data
encrypted with different keys. The decryption requires all parties to come
together and to run a multi-party computation protocol so that a client can
retrieve all the keys under which the data was encrypted. As a result, the
users need to do work proportional in the number of keys. Very recently,
Popa and Zeldovich [22,23] proposed alternative design based on the bilinear
map. Roughly speaking, a data owner in their model generates a set of docu-
ments {d1, . . . , dλ} and then an access structure is defined for all users. Each
document dj generated and the corresponding keyword set {w

(1)
j , . . . , w

(ηj)
j }

extracted at session j (sid = j) will be encrypted by a fresh secret key kj . The
encrypted data and keyword set are then outsourced to a database server. A
legitimate user is then given the corresponding encryption key kj via a secure
and authenticated channel established between the participants.

1.1 The Motivation Problem

Note that in the Popa and Zeldovich’s scheme [22,23], user’s primary key is
assigned by the data owner while the corresponding delta keys are computed
from the primary key and the specified encryption keys. The underlying access
graph should be updated whenever a new document is outsourced to the server.
The update procedure could be a difficult task if the frequency of data outsourc-
ing is high since the size of stored delta keys can be proportional to the stored
documents. Furthermore, when the deployed server is unreliable, as the case in
modern data centers, redundancy must be introduced into the system to improve
reliability against server failure (say, a complicated delta key recovery mecha-
nism, or a Hadoop-like delta key duplication mechanism or a MapReduce-like
distributed computing mechanism should be introduced). Since no countermea-
sure dealing with the server failure (or the delta key recovery) is known within
the multi-user, multi-key searchable encryption framework, it is certainly wel-
come if one is able to provide such a counter-measure resilient the server failure.

1.2 This Work

This paper studies multi-user, multi-key searchable encryptions in the data
owner controlled framework, where a data owner generates, manages and main-
tains all generated documents, documents encryption keys and keyword encryp-
tion keys (we distinguish the keys used to encrypt documents and to encrypt
keywords throughout the paper). In our model, a database management sys-
tem (DBMS), a data owner O, a set of users, a token generator (TG), a token
extractor (TE) and a data extractor (DE) are introduced and formalized. All
participants in our model run in the X-as-a-service model, where X = (token
generation, token extraction, data extraction etc.):

Distributed Multi-user, Multi-key Searchable Encryptions 19

– The DBMS manages and maintains the system level parameters in the bul-
letin board model. The DBMS should be able to add public information to
the bulletin board so that all participants are able to obtain public informa-
tion from the bulletin board. We stress that bulletin boards are used in any
instance where public access to information is desired in the cryptography.

– A data owner O generates his/her data in a session and then extracts a set of
keywords from the generated data accordingly (for example, by means of the
inverted index program). To outsource the data generated at the ith session
(the session id is denoted by sid = i), O first generates a secret document
encryption key ski that will be used to encrypt the document. Then a public
mask key Ki that will be used to mask the document encryption key ski and a
keyword encryption key ki that will be used to encrypt the generated keyword
set are generated by means of a cryptographically secure random number gen-
erator.

Let ti = (t(1)i , t
(2)
i) be an output of cryptographically strong sustainable

pseudo-random number generator at the ith session (say, the Barak-Halevi’s
(BH) scheme [2], or any other cryptographically strong pseudo-random num-
ber generator). t

(1)
i is used to generate the mask encryption key Ki ← gt

(1)
i

while t
(2)
i is used to generate the keyword encryption key ki =H(t(2)i), where

< g >= G ⊆ Z∗
p , |G| = 2q, p = 2q + 1 is a large prime number and H:

{0, 1}∗ → G, is a cryptographically strong hash function. The auxiliary mask
encryption string t

(1)
i is shared among a set of nD data extraction processors

where any subset of mD-out-of-the-nD processors can be used to reconstruct
Ki while the auxiliary keyword encryption string t

(2)
i is kept secret by the

data owner. The encrypted data are then outsourced to the DBMS.
– To support the keyword search procedure, the data owner must provide search

structures for users. In many real-life situations, we don’t believe that any given
person can be trusted, yet it is reasonable to assume that the majority of people
are trustworthy. Similarly, in on-line transactions, we may doubt that a given
server can be trusted, but we hope that the majority of servers are working
properly. Based on this assumption, we can create trusted entities, where the
notion of token generators which manage and maintain a set of token genera-
tion processors, the notion of token extractors which manage and maintain a
set of token extractor processors and the notion of data extractors which man-
age and maintain a set of data extraction processors are introduced. All key-
word encryption keys are securely shared among token generation processors
while all auxiliary mask strings are securely shared among the data extraction
processors by means of the Shamir’s secret sharing protocol.

An Overview of Processing. A processing of a keyword search comprises the
following phases: the setup phase (including the data outsourcing); the query
processing phase and the data extraction phase.

– In the setup phase, system parameters are generated for all participants;
The data owner generates document encryption keys, mask keys and key-

20 H. Zhu

word encryption keys for the initial data set. The auxiliary mask strings and
keyword encryption keys are then securely distributed among a set of data
extraction processors and a set of token generation processors respectively.

– In the query processing phase, a user first selects a keyword w, and then
encrypts it by the ElGamal encryption scheme (u = gr, v = H(w)hr), where
g and H are common system strings and h is generated on-the-fly from an
arbitrary subset of token extraction processors. The encrypted keyword c =
(u, v) is then sent to the DBMS via the token generator server TG. The
DBMS and token extraction processors TEP s work together to extract the
search token, and then retrieve data accordingly from the database server;

– In the data extraction phase, the retrieved ciphertexts such that each of which
contains the specified keyword w are sent back to the user. The user then
invokes mD-out-of-nD data extraction processors to decrypt the ciphertexts.

The Security. Intuitively, we expect the semantic security from multi-key
searchable schemes:

– Keyword hiding: an adversary cannot learn the keyword one searches for;
– Token hiding: an adversary is not be able to distinguish between ciphertexts

of two search tokens;
– Data hiding: if a document encryption key leaks, the contents of the other

documents the user has access should not leak.

We are able to show that if the Diffie-Hellamn problem is hard and the
underlying pseudo-random number generator is cryptographically strong, then
the proposed multi-key searchable encryption is semantically secure.

What’s New? We provide a new construction of multi-user, multi-key search-
able encryptions based on the Pohlig-Hemman function and the ElGamal encryp-
tion scheme and a new method of achieving on-the-fly multi-party computation
using the threshold multi-key encryptions. Our solution is different from the
state-of-the-art solutions [17] leveraging the lattice based encryption scheme
NTRU [14]), where a-priori bounded number of users should be defined since
a decryption depends on the specified bound. Our solution is also different from
the Popa and Zeldovich’s methodology [22,23] which is leveraging the bilinear
map based encryption scheme [6]), where a document encryption key should
be distributed to all valid users. The proposed scheme leverages a combination
of the Shamir’s threshold secret key sharing, the Pohlig-Hellman function and
the ElGamal encryption scheme to provide high reliability with limited stor-
age overhead. It achieves the semantic security (the keyword hiding, the search
token hiding and the data hiding) under the joint assumptions that the deci-
sional Diffie-Hellman problem is hard and the pseudo-random number generator
deployed is cryptographically strong.

The Road Map: The rest of this paper is organized as follows: in Sect. 2, syntax
and security definition of multi-user, multi-key search protocols are presented;

Distributed Multi-user, Multi-key Searchable Encryptions 21

An efficient construction of searchable encryptions based on the Pohlig-Hellman
functions and the ElGamal encryption scheme is then proposed and analyzed;
We show the proposed scheme is semantically secure in Sect. 3. We conclude this
work in Sect. 4.

2 Syntax and Security Definition

This section consists of the following two parts: syntax and security definitions
of multi-user, multi-key searchable encryptions.

2.1 Syntax of Multi-user, Multi-key Database Search

A multi-user, multi-key database search scheme comprises the following partic-
ipants: a database management system, data owners, users, a token generator,
a token extractor and a data extractor. Our scheme works in the bulletin board
model where a participant can add his/her public information to it so that any
other participant can use the public information available on the bulletin board.
Notice that once the public information is outsourced to the bulletin board it
cannot be deleted or modified by the original public information creator. The
integrate of the outsourced public information is managed and maintained by a
trusted certificate authority.

1. A database management system (DBMS) takes as input the security parame-
ter 1k and outputs system wide parameters params and a pair of public/secret
keys (pkDB , skDB). params is publicly known by all participants.

2. A set of data owners are involved in a searchable encryption scheme. Each
data owner (O) takes as input the system parameters params and outputs a
pair of public and secret keys (pkO, skO);

A procedure for outsourcing the encrypted data will be modelled as a
session. In each session sid = j, O takes params and (pkO, skO) as input and
generates a triple of the document encryption key sk

(O)
j , the mask encryption

key K
(O)
j and the keyword encryption key k

(O)
j ;

3. A token generator TG takes params as input and generates a pair of its own
public and secret keys (pkTG, skTG).

A token generator manages and maintains a group of token generation
processors (TGP s). Each TGP takes params as input and generates a pair of
public and secret keys (pkTGPi

, skTGPi
). To enable the keyword search over

the outsourced encrypted data, O will distribute secret shares of a keyword
encryption key k

(O)
j generated at session j to nG token generation processors

by means of the Shamir’s threshold secret key sharing scheme such that any
subset of mG (out-of-nG) token generation processors can reconstruct the
keyword encryption key k

(O)
j .

4. A token extractor (TE) takes params as input and generates a pair of its own
public and secret keys (pkTE , skTE). TE manages and maintains a group of
token extraction processors (TEP s). Each TEP takes params as input and
generates a pair of public and secret keys (pkTEPi

, skTEPi
) for i = 1, . . . , nE .

22 H. Zhu

5. A data extractor DE takes params as input to generate a pair of public and
secret keys (pkDE , skDE). DE manages and maintains a group of nD data
extraction processors (DEP1, · · · , DEPnD

). Each data extraction processor
DEP takes params and pkDE as input to generate a pair of public and secret
keys (pkDEPi

, skDEPi
); To enable users to extract the retrieved encrypted

documents, O will distribute shares of the auxiliary mask key string of K
(O)
j

generated at session j to nD data extraction processors by means of the
Shamir’s threshold secret key sharing scheme such that any subset of mD

(out of nD) data extraction processors can reconstruct the mask encryption
key K

(O)
j .

6. A set of users are involved in the searchable encryption. Each user U (or an
querier) takes params as input to generate a pair of public and secret keys
(pkU , skU). A valid user is allowed to submit a query to the DBMS. On input
a keyword w ∈ W , U encodes w and then sends the resulting codeword c(w)
to TG who generates a valid search token t(w) by means of the multi-party
computations. The resulting search token t(w) is then sent to the DBMS
who collaborates with TE to extract the search token and then sends back
to U all retrieved encrypted data D such that each D ∈ D contains w.

2.2 Security of Multi-key Database Search

We formalize security requirements specified in Sect. 1 with following games: key-
word hiding, token hiding and data hiding that express these goals. One holistic
security definition would be a stronger guarantee, but that greatly complicate
the designs and proofs. Nevertheless, the separate definitions also capture the
desired security goals.

Keyword Hiding Game. The keyword hiding game is between a challenger C
and an adversary A on security parameter 1k and pubic parameter params

– C invokes the DBMS which takes as input 1k to output params and provides
params to A;

– C invokes n token extraction processors each of which takes as input params
to output n pairs of public and secret keys (pkTEPi

, skTEPi
) (i = 1, · · · , n).

C then provides pkTEPi
(i = 1, · · · , n) to A.

– Let Δ be an arbitrary subset of {1, · · · , n} containing m public key indexes.
Let pk

(Δ)
TEP be a public key computed from the selected m public keys.

– Let w0 and w1 be two keywords selected by A. The challenger selects a bit
b ∈R {0, 1} uniformly at random. Let c = E

pk
(Δ)
T EP

(wb) for b ∈R {0, 1}. The
adversary is given (Δ, c) and outputs a guess b′ ∈ {0, 1}.

Definition 1 (Keyword Hiding). We say that the communication between users
and the token extractor (and the token extraction processors) is keyword hiding
if for any polynomial time adversary A that given (Δ, c), where c = E

pk
(Δ)
T EP

(wb)
for b ∈R {0, 1}, outputs a guess b′, the following holds: Pr[b = b′] − 1/2| is at
most a negligible amount:

Distributed Multi-user, Multi-key Searchable Encryptions 23

Token Hiding Game. The token hiding game is between a challenger C and
an adversary A on security parameter 1k and pubic parameter params

– C invokes the DBMS which takes as input 1k to output params and provides
params to A;

– C invokes the data owner O which takes as input the system parameters params
to output a pair of public and secret keys (pkO, skO). The adversary A is given
pkO; In each session, say session j, O takes params as input and generates a
keyword encryption key kj ;

– The adversary A invokes the database management server which takes as input
params to output (pkDB , skDB). A obtains pkDB;

– C invokes n token generation processors each of which takes as input params
to output n pairs of public and secret keys (pkTGPi

, skTGPi
) (i = 1, · · · , n). C

then provides pkTGPi
(i = 1, · · · , n) to A;

– Let k
(l)
j be a secret share of kj shared by TGPl for j = 1, · · · , κ and l =

1, · · · , n, where κ is the number of kj shared among the token processors so
far. Let w be an input to the token generation processor TGPj . The challenger
then invokes TGPj which takes k

(l)
j as an input and then outputs c

(l)
j . The

resulting ciphertext c
(l)
j is then sent to A who computes the corresponding

coefficient α
(l)
j of the Lagrange Interpolation Formula to output an encryption

TG(kj , w) of the search token.
– The challenger then selects a bit b ∈ {0, 1} uniformly at random and then

given {c
(l)
j }n

l=1 and TG1 = (TG(kj , w)) if b = 1 and {c
(l)
j }n

l=1 and a random
string TG0 ∈ G if b = 0. The adversary outputs a guess b′ ∈ {0, 1}.

Definition 2 (Token Hiding). We say that the communication between users
and the token generator who manages and maintains the token generation proces-
sors is token hiding if for any polynomial time adversary A that given TGb(k, c)
and {c

(l)
j }n

l=1, outputs a guess b′, the following holds: Pr[b = b′]−1/2| is at most
a negligible amount:

Data Hiding Game. The data hiding game is between a challenger C and an
adversary A on security parameter 1k and pubic parameter params

– C invokes the DBMS which takes as input 1k to output params and (pkDB ,
skDB). C provides params and pkDB to A;

– C invokes the data owner O which takes as input the system parameters params
to output a pair of public and secret keys (pkO, skO). The adversary A is given
pkO;

In each session, say session j, O takes params as input and generates a mask
encryption key Kj . The data mj is then encrypted under Kj . The resulting
ciphertext cj is outsourced to the DBMS;

– C invokes n data extraction processors each of which takes as input params
to output n pairs of public and secret keys (pkDEPi

, skDEPi
) (i = 1, · · · , n).

C then provides pkDEPi
(i = 1, · · · , n) to A;

24 H. Zhu

Let K
(l)
j be the share of auxiliary mask key string of Kj by DEPl for

j = 1, · · · , κ and l = 1, · · · , n, where κ is the number of Kj shared among the
data extraction processors so far.

To decrypt a ciphertext cj , the data extractor first selects an arbitrary
subset of {1, · · · , n} that contains arbitrary m public key indexes of the data
extraction processors. Let Δ be the selected subset. The data extractor then
invokes DEPj ∈ Δ which takes K

(l)
j as an input to output c

(l)
j . The resulting

c
(l)
j is then sent back to DE who computes the corresponding coefficient α

(l)
j

of the Lagrange Interpolation Formula to output the plaintext m.
– Let m be a target document selected by A. For the given m, C selects a random

bit b ∈R {0, 1}. Let cb = EDEP (m) for b ∈R {0, 1} and cb = EDEP (1|m|) (an
encryption of the dummy document). The adversary is given (c0, c1), and
outputs a guess b′ ∈ {0, 1}.

Definition 3 (Data Hiding). We say that the communication between the owner
and the data extractor is data hiding if for any polynomial time adversary A that
given (c0, c1), outputs a guess b′, the following holds: Pr[b = b′]−1/2| is at most
a negligible amount:

Definition 4 (Semantic Security). We say that a multi-user, multi-key search-
able encryption system is semantically secure if it achieves the keyword hiding,
token hiding and data hiding properties.

3 The Construction

We now present a construction of multi-user, multi-key searchable encryptions in
the bulletin board model that realizes the functionalities described in Sect. 3.1.
We analyze its security in Sect. 3.2.

3.1 The Description

Our protocol comprises the following phases: the setup phase, the outsourcing
phase, the processing phase and the extraction phase. The details of each phase
are depicted below

The setup phase

– On input a security parameter parameter 1k, DBMS output system parame-
ters params: a large safe prime number p such that p =2q + 1, p and q are
prime numbers, |p| = k together with a cyclic group G of order q. Let g be a
random generator of G.

DBMS then takes params as input to generate a pair of public and secret
keys (pkDB , skDB), where pkDB =(g, hDB), hDB = gxDB and skDB = xDB.

– A data owner O takes params as input and generates a pair of public and
secret keys (pkO, skO) where pkO = (g, hO), hO = gxO mod p and skO =xO

(in the following discussions, we simply assume that (pkO, skO) is suitable for
both the data encryption and data attestation).

Distributed Multi-user, Multi-key Searchable Encryptions 25

– A data extractor DE takes params as input to generate a pair of public and
secret keys (pkDE , skDE), where pkDE =(g, hDE), hDE = gxDE and skDE =
xDE .

DE in our model manages and maintains nD data extraction processors
(DEP1, · · · , DEPnD

). Each extraction processor DEPi generates its own
public and secret key pairs pkDEPi

= (g, hDEPi
), hDEPi

= gxDEPi and skDEPi

= xDEPi
independently.

To enable users to obtain the corresponding plaintexts from the retrieved
encrypted data, O delegates her decryption right to data extraction processors
by invoking the Shamir’s (mD, nD)-secret-key sharing algorithm such that any
mD combinations of shares is sufficiently to reconstruct the mask encryption
key by applying the Lagrange Interpolation Formula.

For simplicity, we assume that a secure (private and authenticated) channel
has been established between O and DE and secure channels between DE
and DEPi respectively (such a secure channel assumption can be eliminated
trivially under the standard PKI assumption).

– A token generator TG takes params as input to output a pair of public and
secret keys (pkTG, skTG), where pkTG =(g, hTG), hTG = gxT G and skTG =
xTG.

In our model, TG manages and maintains nG token generation processors
(TGP1, · · · , TGPnG

). Each token generation processor TGPi generates its own
public and secret key pairs pkTGPi

= (g, hTGPi
), hTGPi

=gxT GPi and skTGPi
=

xTGPi
. Again, we assume that a secure channel has been established between

TG and O (TG and TGPi respectively).
– A token extractor TE takes params as input to output a pair of public and

secret keys (pkTE , skTE), where pkTE =(g, hTE), hTE = gxT E and skTE =
xTE .

In our model, TE manages and maintains nE token extraction processors
(TEP1, · · · , TEPnE

). Each token extraction processor TEPi generates its own
public and secret key pairs pkTEPi

= (g, hTEPi
), hTEPi

=gxT EPi and skTEPi

= xTEPi
. We assume that a secure channel has been established between TE

and DBMS (TE and TEPi respectively).
– A user U takes params as input to generate a pair of public and secret keys

(pkU , skU), where pkU =(g, hU), hU = gxU and skU = xU .

The outsourcing phase

In the outsourcing phase, the search structure of the outsourced data and
keyword is defined as follows: let BH be the Barak-Helavi’s (or any other cryp-
tographically strong) pseudo-random number generator [2] and H: {0, 1}∗ → G
be a cryptographically strong hash function. We view a data outsourcing activity
as a session in the following depiction.

– At session sid = i, on input di, the data owner O first selects a document
encryption key ski with suitable length (say 128-bit or 256-bit for AES) and
then invokes the BH pseudo-random number generator to output a pair of

26 H. Zhu

mask key Ki and keyword encryption key ki. The document encryption key
ski is encrypted by the mask encryption key Ki computed on the fly: let si−1

be the previous internal state of the BH pseudo-random number generator at
session sid = i−1. To generate a pair of mask key Ki and keyword encryption
key ki for di, O invokes the BH scheme which takes si−1 as input to output
(si, ti), where si is the internal state at session sid = i and ti is the current
output. O then parses ti to two parts (t(1)i , t

(2)
i) and then enciphers the first

part t
(1)
i by computing Ki = gt

(1)
i mod p and the second part t

(2)
i by computing

ki= H(t(2)i), where H is a cryptographically hash function (in essence, we view
H as a random oracle). Ki is called the mask key that will be used to encrypt
the document encryption key ski while ki is called the keyword encryption
key. The first part t

(1)
i is called the auxiliary mask string while the second

part t
(2)
i is called the auxiliary keyword encryption string.

– O extracts the keyword sets Wi = {w
(1)
i , · · · , w

(γi)
i } from di by means of the

inverted index.
To encrypt a keyword w ∈ Wi, O invokes the Pohlig-Hellman function to

compute c(ki, w) ← H(w)ki mod p. c(ki, w) is then outsourced the DBMS.
Let c(ki,Wi) be an encryption of the keyword set Wi under the keyword
encryption key ki at session sid = i.

To enable users to search keywords, the data owner O provides a search
structure by sharing ki among nG token generation processors managed and
maintained by the token generator TG. To distribute secret shares to TGPs,
O invokes the Shamir’s threshold secret key sharing protocol below:
• O randomly selects a polynomial f(x) = f0+f1x+ · · ·+fmG−1x

mG−1 (mod

q), where f0 = ki and k
(l)
i

def
= f(TEPl)) (i = 1, . . . , nG);

• TEPl is given f(TEPl), l = 1, . . . , nG.
– To outsource di, O first invokes a cryptographically strong block cipher say,

Advanced encryption standard AES which takes ski and di as input to gen-
erate the ciphertext c(ski, di).

Let c(Ki, ski)=(gr, ski × Kr
i) be an encryption of the secret key ski under

the mask encryption key Ki. The corresponding auxiliary mask encryption
string is shared among nD data extraction processors DEP1, . . . , DEPnD

(again O applies the Shamir’s threshold scheme to the auxiliary string t
(1)
i)

such that a combination of mD-out-of-nD shares can be used to reconstruct
the the auxiliary key t

(1)
i such that Ki = gt

(1)
i .

The resulting ciphertext (c(ki,Wi), c(Ki, ski), c(ski, di)) are then sent to
the DBMS.

The query processing phase

In the query processing phase, a computation of individual user is depicted
below

– The input of a user U is a keyword w together with a description of token
extraction processors whose public keys are denoted by (g, hTEP1), · · · , (g,

Distributed Multi-user, Multi-key Searchable Encryptions 27

hTEPnE
). U then selects mE-out-of-nE token extraction processors uniformly

at random. Let (g, hTEPi1
), · · · , (g, hTEPimE

) be mE selected token extraction
processors. Let Δ = (i1, · · · , imE

) and h = ΠmE
j=1hTEPij

.
To hide the selected keyword w, U selects a string r ∈ Zq uniformly at

random and computes u = gr mod p, v = H(w)hr mod p. Let c = (u, v)
and ˜Δ be an encryption of Δ under the DBMS’ public-key pkDB , i.e., ˜Δ =
EpkDB

(Δ). Let mU =(˜Δ, c). Let σU (H(mU) be a signature of mU attested by
the user U . (σU (H(mU)),mU) is then sent by the user to the token generator.

– Upon receiving (σU (H(mU)),mU), the token generator TG who manages nG

token generation processors first checks the validity of the received message
(recall that all computations are running in the X-as-a-service model). If the
signature is invalid, then TG rejects the received message; otherwise, TG
selects mG-out-of-the-nG token generation processors uniformly at random
and then forwards c = (u, v) to the selected mG processors {TGPi1 , · · · ,
TGPimG

}. Let k
(l)
j be a secret share of kj by TGPl for j = 1, · · · , κ and

l = 1, · · · , nG, where κ is the number of kj shared so far. For each share k
(l)
j ,

TGPl performs the following computations for each share k
(l)
j :

• u
(l)
j = uk

(l)
j mod p;

• v
(l)
j = vk

(l)
j mod p.

TGPj then sends c
(l)
j back to TG, where c

(l)
j =(u(l)

j , v
(l)
j);

Upon receiving c
(l)
j , TG computes the corresponding coefficient α

(l)
j of the

Lagrange Interpolation Formula and then computes uj =
∏imT

l=i1
(uj

(l))α
(l)
j and

vj =
∏imT

l=i1
(v(l)

j)α
(l)
j . One can verify that uj = ukj = grkj and vj = vkj =

H(w)kj hrkj . Let cj = (uj , vj) and mTG = (σU (H(mU)), ˜Δ, {cj}κ
j=1). TG

then generates a signature σGT on the message mTG (this task is trivial under
the standard PKI assumption) and then sends (mTG, σTG) to the DBMS.

– Upon receiving (mTG, σTG), DBMS checks the validity of the received mes-
sage. If it is invalid, then terminates the protocol; otherwise, it decrypts ˜Δ to
get Δ and broadcasts {uj}κ

j=1 to all token extractors within Δ via a secure
multi-cast channel (such a multi-cast channel can be efficiently implemented
in the context of group communication protocol).

Each token extraction processor TEPl computes ũ
(l)
j = uxl

j and sends

(TEP
(l)
j , ũ

(l)
j) to TE, where TEP

(l)
j stands for the jth input processed by the

lth token extraction processor. The computing results {TEP
(l)
j , ũ

(l)
j }imE

l=i1
are

then sent back to the DBMS.
– Upon receiving {TEP

(l)
j , ũ

(l)
j }imE

l=i1
from all token extraction processors, the

DBMS computes ûj =
∏mE

l=1 ũj . One can verify that ûj =hrki . As a result,
given ûi and {vj}mE

j=1, DBMS is able to extract the search token H(w)ki . Let
D be a set of encrypted documents so that c(w) ∈ D for each D ∈ D. DBMS
then sends D to the user U ;

28 H. Zhu

The data extraction phase

– Upon receiving D, the user performs a decryption of message via the Shamir’s
threshold decryption protocol to obtain ski. Once obtains ski, the user U can
decrypt the received ciphertexts.

This ends the description of our protocol.

3.2 The Proof of Security

The correctness of the protocol can be verified step by step and hence omitted.
The rest of this section is to provide a proof of security defined in Sect. 3.

Lemma 1. Let Δ be an arbitrary subset of {TEP1, · · · , TEPm}, suppose at
least one of the selected token extraction processor is honest then the proposed
scheme is keyword hiding assuming that the decisional Diffie-Hellman problem
is hard.

Proof. C invokes n token extraction processors each of which takes as input
params to output n pairs of public and secret keys (pkTEPi

, skTEPi
) (i =

1, · · · , n). C then provides pkTEPi
(i = 1, · · · , n) to A. Let Δ be an arbitrary

subset of {1, · · · , n} containing m public key indexes. Without loss of the gen-
erality, we assume that Δ ={(g, pkTEP1), . . . , (g, pkTEPm

)}, where pkTEPi
=

gxT EPi . The challenger is allowed to corrupt m − 1 token extraction processors
and obtains the corresponding secret keys xTEPi

for i = 1, . . . , m − 1. The chal-
lenger’s target is to break the mth instance of the ElGamal encryption scheme.

Let h (= pk
(Δ)
TEP)= pkTEP1 × · · · × pkTEPm

. Let w0 and w1 be two keywords
output by the adversary which is also known to the challenger. Let c ← (gr,
H(wb)×hr) (generated by the semantic security game of the underlying encryp-
tion scheme (g, pkTEPm

)). The challenger then forwards (w0, w1) and c to the
adversary A. The adversary outputs a guess b′ ∈ {0, 1}. The challenger outputs
what the adversary outputs.

Given c = (gr,H(wb)hr) and xTEPi
for i = 1, . . . , m − 1, the challenger is

able to compute (gr,H(wb)hr
m) where hm = pkTEPm

. Hence if Pr[b = b′] − 1/2|
is a non-negligible then the mth instance of the underlying ElGamal encryption
scheme is not semantically secure which contradicts the decisional Diffie-Hellman
assumption.

Lemma 2. Let Δ = {TGP1, · · · , TGPm} be an arbitrary subset of total token
generation processors. Suppose at least one of the selected token extraction
processor is honest then the proposed scheme is token hiding assuming that
the decisional Diffie-Hellman problem is hard and the underlying BH pseudo-
random number generator is cryptographically strong.

Proof. Let w be a keyword selected by A. Let kj be the key used to generate the
search token at session sid = j. Assuming that up to (m − 1) token generation
processors are corrupted and the adversary obtains the corresponding shares,

Distributed Multi-user, Multi-key Searchable Encryptions 29

say (k(1)
j , . . . , k

(m−1)
j). The mth token generation processor remains honest at

the session sid = j. Let k
(l)
j be a secret share of kj by TGPl for l = 1, · · · , nG.

Notice that the only knowledge applied to H(w) is k
(l)
j . For fixed set of shares

(k(1)
j , . . . , k

(m−1)
j), there is a one to one mapping (the Lagrange interpolation

formula) between k
(l)
j and kj . As a result, H(w)kj is random from the point view

of the adversary if the underlying pseudo-random number generator is secure.
As a result, the only information leaked is the computation of H(w)k

(l)
j . Since

G is a cyclic group, it follows that H(w)= grw for some rw ∈ [0, q − 1]. Thus,

(g,H(w), gk
(l)
j ,H(w)k

(l)
j) is a Diffie-Hellman quadruple that is indistinguishable

from the random quadruple. As a result, the advantage Pr[b = b′] − 1/2| that
the adversary outputs a correct guess is at most a negligible amount.

Lemma 3. Let Δ = {DEP1, · · · , DEPm} be an arbitrary subset of total data
extraction processors. Suppose at least one of the selected data extraction proces-
sor is honest then the proposed scheme is data hiding assuming that the decisional
Diffie-Hellman problem is hard.

Proof. C invokes the data owner O which takes as input the system parameters
params to output a pair of public and secret keys (pkO, skO). The adversary A
is given pkO; At the session i, O takes params as input and generates a mask
key Ki such that Ki = t

(1)
i , where the auxiliary string t

(1)
i is the first part of the

output ti generated by the BH pseudo-random generator.
C invokes n data extraction processors each of which takes as input params to

output n pairs of public and secret keys (pkDEPi
, skDEPi

) (i = 1, · · · , n). C then
provides pkDEPi

to A. Let K
(l)
i be the share of t

(1)
i via the Lagrange interpolation

formula for l = 1, · · · , n. Let Δ be an arbitrary subset of {DEP1, · · · ,DEPn}
and m0 and m1 be two documents all selected by A. We assume that the adver-
sary can corrupt up to (m−1) data extraction processors and obtains the corre-
sponding secret shares K

(l)
i for l = 1, . . . , m − 1. The data mb is then encrypted

under Ki, i.e., ci = (ui, vi), where ui = gr and vi = mbK
r
i (here for simplic-

ity, we assume that mb is encrypted under Ki directly). The adversary is given
ci. The adversary obtains the (m − 1) secret shares each of which is holden

by the corrupted parties say DEP1, . . . , DEPm−1. Notice that Kr
i = u

K
(1)
i α1

i ×
· · · × u

K
(m−1)
i αm−1

i × u
K

(m)
i αm

i , where αi is the ith coefficient of the Lagrange
Interpolation formula. Thus, mbK

r
i is a random value from the point view of

the adversary. As a result, the advantage Pr[b = b′] − 1/2| that the adversary
outputs a correct guess is at most a negligible amount.

Based on the lemmas above and we claim the following main result

Theorem 1. The proposed multi-key searchable encryption is semantically
secure under the joint assumptions that the decisional Diffie-Hellman problem
is hard in Z∗

p and the underlying pseudo-random number generator deployed is
cryptographically strong.

30 H. Zhu

4 Conclusion

In this paper, an efficient multi-user, multi-key searchable encryption scheme is
presented and analyzed. Our design is simple, scalable, adaptable and sustain-
able. The processors are distributed to provide high reliability with limited stor-
age, communication and computation overhead by the threshold cryptographic
system.

References

1. Bao, F., Deng, R.H., Ding, X., Yang, Y.: Private query on encrypted data in multi-
user settings. In: Chen, L., Mu, Y., Susilo, W. (eds.) ISPEC 2008. LNCS, vol. 4991,
pp. 71–85. Springer, Heidelberg (2008)

2. Barak, B., Halevi, S.: A model and architecture for pseudo-random generation with
applications to dev random. In: ACM Conference on Computer and Communica-
tions Security, pp. 203–212 (2005)

3. Bellare, M., Boldyreva, A., O’Neill, A.: Deterministic and efficiently searchable
encryption. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 535–552.
Springer, Heidelberg (2007)

4. Bethencourt, J., Song, D.X., Waters, B.: New techniques for private stream search-
ing. ACM Trans. Inf. Syst. Secur. 12(3), 16 (2009)

5. Boneh, D., Di Crescenzo, G., Ostrovsky, R., Persiano, G.: Public key encryption
with keyword search. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004.
LNCS, vol. 3027, pp. 506–522. Springer, Heidelberg (2004)

6. Boneh, D., Franklin, M.: Identity-based encryption from the weil pairing. In: Kilian,
J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg (2001)

7. Boneh, D., Waters, B.: Conjunctive, subset, and range queries on encrypted
data. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 535–554. Springer,
Heidelberg (2007)

8. Chor, B., Kushilevitz, E., Goldreich, O., Sudan, M.: Private information retrieval.
J. ACM 45(6), 965–981 (1998)

9. Cao, N., Wang, C., Li, M., et al.: Privacy-preserving multi-keyword ranked search
over encrypted cloud data. IEEE Trans. Parallel Distrib. Syst. 25(1), 222–233
(2014)

10. Curtmola, R., Garay, J.A., Kamara, S.: Ostrovsky, R.: Searchable symmetric
encryption: improved definitions and efficient constructions. In: ACM Conference
on Computer and Communications Security, pp. 79–88 (2006)

11. Gertner, Y., Ishai, Y., Kushilevitz, E., Malkin, T.: Protecting data privacy in
private information retrieval schemes. J. Comput. Syst. Sci. 60(3), 592–629 (2000)

12. Gathegi, J.N.: Clouding big data: information privacy considerations. In: Gathegi,
J.N., Tonta, Y., Kurbanoğlu, S., Al, U., Taşkin, Z. (eds.) Challenges of Information
Management Beyond the Cloud. Springer, Heidelberg (2014)

13. Goh, E.-J.: Secure indexes. IACR Cryptology ePrint Archive, p. 216 (2003)
14. Hoffstein, J., Pipher, J., Silverman, J.H.: NTRU: a ring-based public key cryptosys-

tem. In: Buhler, J.P. (ed.) ANTS 1998. LNCS, vol. 1423, pp. 267–288. Springer,
Heidelberg (1998)

15. Kamara, S., Papamanthou, C., Roeder, T.: Dynamic searchable symmetric encryp-
tion. In: ACM Conference on Computer and Communications Security, pp. 965–976
(2012)

Distributed Multi-user, Multi-key Searchable Encryptions 31

16. Hahn, F., Kerschbaum, F.: Searchable encryption with secure, efficient updates. In:
Proceedings of the 2014 ACM SIGSAC Conference on Computer, Communications
Security. ACM, pp. 310–320 (2014)

17. López-Alt, A., Tromer, E., Vaikuntanathan, V.: On-the-fly multiparty computation
on the cloud via multikey fully homomorphic encryption. In: STOC, pp. 1219–1234
(2012)

18. Liu, J.K., Au, M.H., Huang, X., Susilo, W., Zhou, J., Yu, Y.: New insight to
preserve online survey accuracy and privacy in big data era. In: Kuty�lowski, M.,
Vaidya, J. (eds.) ICAIS 2014, Part II. LNCS, vol. 8713, pp. 182–199. Springer,
Heidelberg (2014)

19. Malkin, T.: Secure computation for big data. In: Sahai, A. (ed.) TCC 2013. LNCS,
vol. 7785, pp. 355–355. Springer, Heidelberg (2013)

20. Ostrovsky, R., Skeith, W.E.: Private searching on streaming data. J. Cryptology
20(4), 397–430 (2007)

21. Pappas, V., Raykova, M., Vo, B., Bellovin, S.M., Malkin, T.: Private search in the
real world. In: ACSAC, pp. 83–92 (2011)

22. Popa, R.A., Zeldovich, N.: Multi-key searchable encryption. IACR Cryptology
ePrint Archive, p. 508 (2013)

23. Popa, R., Stark, E., Helfer, J., Valdez, S., Zeldovich, N., Kaashoek, M.F.,
Balakrishnan, H.: Building web applications on top of encrypted data using mylar.
In: NSDI (USENIX Symposium of Networked Systems Design and Implementa-
tion) (2014)

24. Orencik, C., Selcuk, A., Savas, E., et al.: Multi-Keyword search over encrypted
data with scoring, search pattern obfuscation. Int. J. Inf. Secur. 1–19 (2015)

25. Rabin, M.O.: How to exchange secrets by oblivious transfer. Technical report TR-
81, Aiken Computation Laboratory, Harvard University (1981)

26. Raykova, M., Cui, A., Vo, B., Liu, B., Malkin, T., Bellovin, S.M., Stolfo, S.J.:
Usable, secure, private search. IEEE Secur. Privacy 10(5), 53–60 (2012)

27. Raykova, M., Vo, B., Bellovin, S.M., Malkin, T.: Secure anonymous database
search. In: CCSW, pp. 115–126 (2009)

28. Samanthula, B.K., Elmehdwi, Y., Howser, G., Madria, S.: A secure data sharing
and query processing framework via federation of cloud computing. Inf. Syst. 48,
196–212 (2015)

29. Song, D.X., Wagner, D., Perrig, A.: Practical techniques for searches on encrypted
data. In: IEEE Symposium on Security and Privacy, pp. 44–55 (2000)

30. Tang, Y., Liu, L.: Privacy-preserving multi-keyword search in information networks
(2015)

31. Yang, Y.: Towards multi-user private keyword search for cloud computing. In:
IEEE CLOUD, pp. 758–759 (2011)

32. Yang, J.J., Li, J.Q., Niu, Y.: A hybrid solution for privacy preserving medical data
sharing in the cloud environment. Future Gener. Comput. Syst. 43, 74–86 (2015)

http://www.springer.com/978-3-319-31549-2

	Distributed Multi-user, Multi-key Searchable Encryptions Resilient Fault Tolerance
	1 Introduction
	1.1 The Motivation Problem
	1.2 This Work

	2 Syntax and Security Definition
	2.1 Syntax of Multi-user, Multi-key Database Search
	2.2 Security of Multi-key Database Search

	3 The Construction
	3.1 The Description
	3.2 The Proof of Security

	4 Conclusion
	References

