Contents

1 Directed Energy Weapons .. 1
 1.1 Introduction .. 1
 1.2 PUFF74: A Material Response Computer Code 4
 1.2.1 Availability of PUFF74 Computer Code 5
 1.3 PUFF-TFT: A Material Response Computer Code 6
 1.3.1 Availability of PUFF-TFT Computer Code 10
 1.4 SANDYL: A Monte Carlo Three-Dimensional
 Computer Code .. 10
 1.4.1 Availability of SANDYL Computer Code 13
 1.5 ASTHMA88 (Axisymmetric Transient Heating
 and Material Ablation) Code 13
 1.5.1 Availability of ASTHMA88 Computer Code 14
 1.6 ALE3D (Arbitrary Lagrangian/Eulerian Multi-Physics 3D)
 Computer Code .. 14
 1.6.1 ALE3D Program Availability 17
 1.7 CTH Computer Code .. 17
 1.7.1 Availability of CTH Computer Code 20
 1.8 HYPUF, Stress Wave Response Computer Code 20
 1.8.1 Availability of HYPUF, Stress Wave Response
 Computer Code ... 21
 1.9 DYNA2D and DYNA3D Computer Codes Series 21
 1.9.1 Availability of DYNA2D and DYNA3D
 Computer Codes .. 22
 1.10 NIKE2D and NIKE3D Computer Codes Series 23
 1.10.1 Availability NIKE2D and NIKE3D Computer
 Codes Series ... 24
 1.11 TOPAZ2D and TOPAZ3D Computer Codes Series 24
 1.11.1 Availability TOPAZ2D and TOPAZ3D Computer
 Codes Series ... 25
 References .. 26
7.6 Theoretical Discussion of Laser Absorption and Reflectivity 233
7.6.1 Reflectivity of Materials at Infrared Wavelength 239
7.7 Mathematical of Laser Absorption in Metals 250
7.8 Material and Thermal Response 258
7.8.1 Boundary Conditions 260
7.9 Solutions of Governing Equation 264
7.9.1 Analytical Methods 264
7.9.2 Melting Process 311
7.9.3 Melting and Vaporization 338
7.9.4 Electron–Phonon Analytical Solution 344
7.10 Comparison of Fourier and Kinetic Theory 351
7.11 Finite Difference Methods 352
7.12 Effects of Pulsed Wave Laser Radiation 353
7.12.1 Power Levels of Pulsed Wave Laser 353
7.12.2 Material Vaporization Effects 353
7.12.3 Effects from Absorption of Radiation in the Plume 358
7.13 Effects of Continuous Wave Laser Radiation 373
References 376

8 Atmospheric Propagation of High-Energy Laser Beams 379
8.1 Introduction 379
8.2 Laser Propagation in the Atmosphere 382
8.2.1 Cloud Descriptions 384
8.2.2 Absorption and Scattering of Laser Beam by Gases and Solids 385
8.3 Laser and Thermal Blooming Effects 397
8.4 Mission Impact 405
8.5 Adaptive Optics 407
8.6 Current Initiatives 411
References 412

Appendix A: Short Course in Taylor Series 415
Appendix B: Short Course in Vector Analysis 423
Appendix C: Short Course in Ordinary and Partial Differential Equations 453
Appendix D: Short Course in Complex Variables 535
Appendix E: Short Course in Fourier and Laplace Transforms 585
Appendix F: Short Course in Electromagnetic 685
Directed Energy Weapons
Physics of High Energy Lasers (HEL)
Zohuri, B.
2016, XX, 816 p. 171 illus., 39 illus. in color., Hardcover
ISBN: 978-3-319-31288-0