Contents

1 Introduction .. 1
 1.1 A Brief Introduction on Railway Operations 1
 1.2 Book Outline .. 4
 References ... 5

2 Background: Train Operations and Scheduling 7
 2.1 Operation of Trains ... 7
 2.1.1 Automatic Train Operation 7
 2.1.2 Principles of Signaling Systems 9
 2.2 Optimal Trajectory Planning of Trains 11
 2.2.1 Optimal Trajectory Planning of a Single Train .. 12
 2.2.2 Optimal Trajectory Planning of Multiple Trains .. 13
 2.3 Urban Rail Transit Scheduling Process 14
 2.3.1 Passenger Demand 15
 2.3.2 Train Scheduling 15
 2.4 Summary ... 18
 References ... 18

3 Optimal Trajectory Planning for a Single Train 23
 3.1 Introduction .. 23
 3.2 Model Formulation ... 24
 3.2.1 Train Model ... 24
 3.2.2 An Assumption About the Line Resistance 26
 3.3 Mathematical Formulation of the Single Train Trajectory Planning Problem 27
 3.4 Solution Approaches 30
 3.4.1 Pseudospectral Method 30
 3.4.2 Mixed Integer Linear Programming 33
4 Optimal Trajectory Planning for Multiple Trains

4.1 Introduction

4.2 Model Formulation

4.2.1 Train Dynamics

4.2.2 Operation of Trains in a Fixed Block Signaling System

4.2.3 Operation of Trains in a Moving Block Signaling System

4.3 Mathematical Formulation of the Multiple Trains Trajectory Planning Problem

4.4 Solution Approaches

4.4.1 Greedy Approach

4.4.2 Simultaneous Approach

4.5 Mixed Logical Dynamic Formulation for Signaling System Constraints

4.5.1 Multiple Trains Under Fixed Block Signaling System

4.5.2 Multiple Trains Under Moving Block Signaling System

4.5.3 Extension: Mode Vector Constraints

4.6 Case Study

4.6.1 Set-Up

4.6.2 Results for the Fixed Block Signaling System

4.6.3 Results for the Moving Block Signaling System

4.6.4 Discussion

4.7 Summary

References

5 OD-Independent Train Scheduling for an Urban Rail Transit Line

5.1 Introduction

5.2 Model Formulation

5.2.1 Arrivals and Departures

5.2.2 Passenger Demand Characteristics

5.2.3 Passenger and Vehicle Interaction

5.3 Mathematical Formulation of the Train Scheduling Problem

5.4 Solution Approaches

5.4.1 Gradient-Free Nonlinear Programming

5.4.2 Gradient-Based Nonlinear Programming

5.4.3 Mixed Integer Nonlinear Programming
Appendix A: A General Formulation of the Pseudospectral Method ... 163
Appendix B: Background—Optimization .. 167
Index .. 179
Optimal Trajectory Planning and Train Scheduling for Urban Rail Transit Systems
Wang, Y.; Ning, B.; van den Boom, T.; De Schutter, B.
2016, XXI, 180 p. 59 illus., 2 illus. in color., Hardcover
ISBN: 978-3-319-30888-3