Contents

1 Interfacial Physics for Water in Biology

1.1 Physics of the Biological Interface ... 1
1.2 Water in Biology: A Molecular Stare .. 3
1.3 Interfacial Tension of Biological Water 6
1.4 Variational Thermodynamics for the Biomolecular Interface 10
1.5 The Aqueous Interface from a Structure-Centric Perspective 18
1.6 Dehydrons Promote Protein Associations: A Structural Perspective 22
1.7 Epistructural Physics of the Protein Interface 25
1.8 Statistical Mechanics Apparatus for Drug-Target Associations 28
1.9 The Principles of Epistructural Physics Translate into the Architecture of Soluble Proteins ... 31
1.10 Why Epistructural Physics? .. 39
1.11 Problems ... 41
References .. 43

2 Dielectric Structure of Aqueous Interfaces: From Classical Non-Debye Electrostatics to a Quantum Theory of Interfacial Tension

2.1 Interfacial Tension Stored as Non-Debye Polarization Energy 48
2.2 Non-Debye Dielectric Structure of the Aqueous Interface for a Soluble Protein ... 52
2.3 Epistructural Physics Reveals a Chemical Functionality for the Aqueous Interface ... 55
2.4 Packing Defects as Catalytic Enablers .. 61
2.5 A Quantum Theory of Interfacial Tension and Its Experimental Verification .. 63
2.6 Problems .. 69
References .. 69

3 Solution to the Protein Folding Problem .. 71
 3.1 Protein Folding as a Many-Body Problem .. 72
 3.2 Cooperativity Arises from Hydrogen-Bond Wrapping .. 75
 3.3 Cooperative Folding Pathways ... 78
 3.4 Improving Wrapping Along Folding Pathways .. 82
 3.5 Dielectric Modulation by the Folding Protein ... 87
 3.6 The Dehydronic Field Steers the Folding Process .. 91
 3.7 The Principle of Minimal Epistructural Distortion in Protein Folding 92
 3.8 Both Structural and Epistructural Perspectives Are Necessary to Solve the Protein Folding Problem .. 99
 3.9 Discussion Forum: The Futile Search for Protein Folding Intermediates 99
 3.10 Problems ... 100
References .. 102

4 Epistructural Dynamics of Biological Water .. 105
 4.1 Dynamic Singularities of Biomolecular Interfaces .. 105
 4.2 Dehydrons Impact the Dynamics of the Aqueous Interface .. 107
 4.3 De-wetting Propensities at the Protein-Water Interface .. 109
 4.4 Aqueous Interface as Blueprint for Drug Design .. 113
 4.5 Dehydron-Heated Interfacial Water ... 114
 4.6 Problems ... 117
References .. 119

5 Dehydron-Rich Proteins in the Order-Disorder Twilight Zone ... 121
 5.1 Dehydron Clusters and the Order-Disorder Twilight .. 122
 5.2 Semiclassical Dielectrics at Dehydron Sites on the Aqueous Interface 124
 5.3 Semiclassical Treatment of Dielectric Modulation of Interfacial Water Around Dehydrons .. 127
 5.4 Dielectric Modulation by Dehydrons in the p53 DNA-Binding Domain 129
 5.5 Proteins with Dehydron Clusters .. 131
 5.6 Inferring Dehydrons from Protein Sequence: Water-Exposed Backbone and Disorder Propensity .. 135
 5.7 Misfolding and Aggregation: Flagrant Violation of the Architectural Golden Rule for Protein Structure .. 139
 5.8 Problems ... 144
References .. 149
6 Dehydron as a Marker for Molecular Evolution: Lessons for the Drug Designer ... 151
6.1 Molecular Evolution for the Drug Designer 152
6.2 Dehydron Patterns Across Orthologous Proteins:
 Hallmarks of Non-adaptive Traits 153
6.3 Natural Selection and Dehydron Patterns 155
6.4 Inefficient Selection in Humans: An Epistuctural
 View of the Coping Mechanism 157
 6.4.1 Expression Patterns Segregating Paralog
 Proteins ... 158
 6.4.2 Dehydron Enrichment Enhances Dosage
 Imbalance ... 161
6.5 Human Capacitance to Cope with the Impact of Dosage
 Imbalances .. 166
6.6 Fitness Catastrophes for the Human Species Are
 the Consequence of Interactome Complexity 167
6.7 Molecular Evolutionary Insights for the Drug Designer:
 An Epistuctural Perspective 170
6.8 Dehydron-Based Non-adaptive Evolutionary
 Technology .. 171
6.9 Dehydron Richness Above Unicellular Levels
 Creates a Structural Dependence Exploited to Evolve
 Multicellularity 172
6.10 Problems ... 178
References .. 178

7 Catalytic Role of Dehydrons in Soluble Proteins:
 Biological Chemistry of Frustrated Interfacial Water 181
7.1 Catalytic Dehydrons 182
7.2 Dehydrons as Quasi-Reactants in Biological Chemistry 186
7.3 The Dehydron as a Catalytic Engine 190
7.4 Quantum Mechanics of Proton Transfer Events
 Involving Dehydrons 191
7.5 Quantum Mechanical Treatment of the Protein-Water
 Interface .. 192
7.6 Dehydron Chemistry 194
7.7 Frustration-Related Biological Chemistry 201
7.8 Problems .. 213
References .. 214

8 Epistuctural Selectivity Filters for Molecular
 Targeted Therapy 217
8.1 Controlling Drug Specificity: A Therapeutic Imperative ... 218
8.2 Epistucture-Based Drug Design 222
8.3 Poor Dehydron Wrappers Make Poor Drugs 225
8.4 The Biomolecular Interface as a Selectivity Filter 225
8.5 Implementing an Epistucture-Based Drug Design 226
8.6 Selectivity of Epistucture-Based Drug Designs 232
8.7 Targeting Dehydrons to Selectively Block Protein Functions 232
8.8 Caveats in Targeting Dehydrons in Floppy Regions 233
8.9 Epistuctural Thermodynamics Filters for Drug Specificity 234
8.10 Problems .. 236
References ... 236

9 Epistuctural Re-engineering of Imatinib to Eliminate Adverse Side Effects ... 239
9.1 Imatinib Re-engineering with a Higher Safety Bar 239
9.2 Epistuctural Blueprint for Imatinib Redesign 240
9.3 Epistuctural Thermodynamics for In Silico Assessment of the Efficacy of Imatinib Wrapping Variant WBZ_4 247
9.4 Test-Tube Validation of the Engineered Specificity in Wrapping Imatinib Variant WBZ_4 .. 250
9.5 In vitro Assays for Imatinib Wrapping Variant WBZ_4 251
9.6 In Vitro Assay of Selective Anticancer Activity of the Wrapping Design ... 255
9.7 Enhanced Safety Tested in Animal Models of Gastrointestinal Stromal Tumor ... 256
9.8 Controlled Specificity Through Epistuctural Design 262
9.9 Problems .. 262
References ... 264

10 Epistuctural Informatics for the Drug Designer 267
10.1 Epistuctural Selectivity Filter for Drug Design 268
10.2 Epistuctural Comparative Analysis of the Human Kinome 269
10.2.1 Sequence-Based Dehydron Inference 269
10.2.2 Epistuctural Alignment of Targetable Regions Across the Human Kinome ... 270
10.3 Pharmacological Relevance of the Epistuctural Analysis 271
10.4 Epistuctural Target Library for the Human Kinome 277
10.5 Specificity-Promoting Target Features 278
10.6 Epistuctural Target Library as a Biotechnological Resource 283
10.7 Epistuctural Analysis for Personalized Molecular Medicine 285
10.8 Virtual Screening of Chemical Libraries Based on Epistuctural Bioinformatics ... 289
10.9 Problems .. 302
References ... 303
11 Drug-Target Associations Inducing Protein Folding

11.1 Induced Folding: The Bête Noire of Structure-Based Drug Design

11.2 Wrapping the Floppy Protein Target in a Controllable Way

11.3 Crating Floppy Regions in Drug Targets

11.4 Target Conformational Dynamics as Selectivity Filter for Drug Design

11.5 Kinase Inhibitor Design Based on Dynamic Information

11.6 Induced Structural Disruption: Designing Drugs by Boosting the Conformational Entropy of the Target Protein

11.7 Problems

References

12 Drug Combinations to Enhance Therapeutic Efficacy and Edit Out Side Effects and Resistance to Inhibition of Drug Resistance

12.1 The Concept of Drug Editor for Side-Effect Removal

12.2 Editing Out Side Effects: Illustrations

12.3 Epistructural Design of a Drug Editor

12.4 Proof of Concept for Therapeutic Editing

12.5 Editing Therapy in the Epistructural Biology Era

12.6 Editing Out Resistance to Inhibition of Drug Resistance

12.7 Curing Cancer by Editing Out Mechanisms to Cope with Metabolic Stress

12.8 Problems

References

13 Epistructure-Based Design of Drugs with Controlled Promiscuity

13.1 Is Cancer Systems Biology Calling for Controlled Promiscuity in Molecular Targeted Therapy?

13.2 Epistructure-Based Control of Drug Promiscuity

13.3 Cleaning Dirty Drugs with Dehydron Filters

13.4 Controlling Staurosporine Promiscuity Through the Dehydron Filter

13.5 Systems Biology Broadens the Platform for Drug Discovery

13.6 Taming Sunitinib Promiscuity to Enhance Safety and Therapeutic Efficacy

13.7 The Therapeutic Paradigm of Controlled Promiscuity

13.8 Problems

References
14 Synergizing Engineered Immunotherapy with Molecularly Targeted Cancer Treatment .. 377
14.1 Molecularly Engineered Removal of Drug-Induced Immunosuppressive Effects in Anticancer Drug Therapy 377
14.2 Therapeutic Shortcomings of Immunosuppressive Anticancer Drugs ... 378
14.3 Immuno-Synergetic Cancer Drugs ... 382
14.4 Therapeutic Evaluation of Immuno-Synergetic Drugs ... 385
14.5 Anticancer Drugs to Overcome HIV-1 Induced Immunosuppression .. 386
14.6 Genetically Modified Adoptive Immunotherapy Synergized With Drug-Based Targeted Anticancer Treatment .. 387
14.7 Problems ... 389
References ... 389

15 Quantum Mechanical Concepts for Epistructural Drug Design .. 393
15.1 Quantum Mechanical Approach to Epistructural Drug Design .. 394
15.2 Halogen Bond Synergizing with Dehydron Wrapping: A Novel Motif in Drug Design 395
15.3 QM-Based Redesign of Imatinib to Overcome Drug Resistance .. 396
15.4 Problems ... 398
References ... 401

16 Structure-Based Drug Discovery Without Structure: Working Around the Paradox to Disrupt Protein-Protein Associations .. 403
16.1 Therapeutic Disruption of Protein-Protein Interfaces .. 404
16.2 Therapeutic Inhibition of Protein-Protein Associations with Unknown Complex Structure .. 405
16.3 Binding Hot Spots and Dehydron-Rich Epitopes .. 406
16.4 Identifying Binding Epitopes Using a Sequence-Based Predictor ... 407
16.5 Learning Technologies to Discover Epitopes for Protein Associations in the Absence of Structure 409
16.6 Dehydron Epitopes Activate Phosphorylation-Susceptible Residues ... 410
16.7 Structure-Based Discovery of Drug Leads in the Absence of Target Structure .. 411
16.8 Problems ... 413
References ... 414
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>17 Epistructural Drug Design to Treat Cancer Metastasis</td>
<td>417</td>
</tr>
<tr>
<td>17.1 Optimized FAK Inhibitor to Treat Cancer Metastasis.</td>
<td>417</td>
</tr>
<tr>
<td>17.2 Overcoming Drug Resistance in the Anti-FAK Treatment of Cancer Metastasis</td>
<td>421</td>
</tr>
<tr>
<td>17.3 Problems</td>
<td>424</td>
</tr>
<tr>
<td>References</td>
<td>425</td>
</tr>
<tr>
<td>Epilogue</td>
<td>427</td>
</tr>
<tr>
<td>Appendix A</td>
<td>433</td>
</tr>
<tr>
<td>Appendix B</td>
<td>445</td>
</tr>
<tr>
<td>Index</td>
<td>475</td>
</tr>
</tbody>
</table>
Physics at the Biomolecular Interface
Fundamentals for Molecular Targeted Therapy
Fernández, A.
2016, XV, 483 p. 295 illus., 208 illus. in color.,
Hardcover
ISBN: 978-3-319-30851-7