Part II Energy from Nuclear Fission

4 Nuclear Reactors .. 147
 4.1 Classification of Nuclear Reactors 147
 4.2 Nuclear Power Plants .. 148
 4.3 Comparison of Various Electricity Generating Technologies ... 154
 4.4 Nuclear Reactor Technologies and Types 156
 4.4.1 Light-Water Reactors (LWR) 158
 4.4.2 Pressurised Water Reactors (PWR) 158
 4.4.3 Boiling Water Reactors (BWR) 159
 4.4.4 Pressurised Heavy-Water Reactors (PHWR) 160
 4.4.5 Light-Water Graphite-moderated Reactors (LWGR) 161
 4.4.6 Gas-Cooled Reactors (GCR) 163
 4.4.7 Fast Neutron Reactors (FNR) 164
 4.5 Generations of Nuclear Reactors 167
 4.6 The Nuclear Fuel Cycle .. 170
 4.6.1 Uranium Mining ... 171
 4.6.2 Uranium Milling ... 171
 4.6.3 Conversion .. 171
 4.6.4 Enrichment .. 171
 4.6.5 Fuel Fabrication .. 172
 4.6.6 Electricity Generation 173
 4.6.7 Spent Fuel Storage ... 174
 4.6.8 Reprocessing .. 174
 4.6.9 Spent Fuel and High-level Waste Disposal 174
 4.7 Main Fuel Cycles: Open Cycle Versus Closed Fuel Cycle 177
 4.8 World Reserves of Nuclear Fuel 179
 4.8.1 Uranium Resources ... 179
 4.8.2 Thorium Resources ... 181
 4.8.3 Uranium Demand ... 182
 References ... 187

5 Nuclear Safety and Security ... 189
 5.1 Nuclear Safety Regulations ... 189
 5.2 Safety and Radiation Protection Objectives 191
 5.3 The Concept of Defence-in-Depth 193
 5.4 Reactor Safety .. 196
 5.4.1 Control of the Reactor .. 196
 5.4.2 Removal of Heat Generated in the Core 197
 5.4.3 Containing the Radioactivity 198
 5.5 Safety in the Design, Operation and Decommissioning 199
 5.6 Responsibility for Safety and Regulation 202
 5.7 Types of Nuclear Accidents and Accident Management 203
 5.8 Previous Experience and Safety Record 203
 5.8.1 The International Nuclear Event Scale (INES) 205
5.9 The Nuclear Accidents

5.9.1 Kyshtym (1957), Russia

5.9.2 Windscale Pile (1957), UK

5.9.3 Three Mile Island (1979), USA

5.9.4 Saint-Laurent (1980), France

5.9.5 Chernobyl (1986), Ukraine

5.9.6 Vandellós (1989), Spain

5.9.7 Tokai-Mura (1999), Japan

5.9.8 Davis-Besse (2002), USA

5.9.9 Paks (2003), Hungary

5.9.10 Fukushima Daiichi (2011), Japan

5.10 Safety Relative to Other Energy Sources

5.11 Nuclear Security and Safeguards

References

6 Management of Radioactive Waste

6.1 Types of Radioactive Waste

6.1.1 Very Low-Level Waste (VLLW)

6.1.2 Low-Level Waste (LLW)

6.1.3 Intermediate-Level Waste (ILW)

6.1.4 High-Level Waste (HLW)

6.2 Composition of Spent Fuel

6.3 Amounts of Radioactive Waste Generated by Nuclear Power Plants

6.4 Radioactive Waste Disposal

6.5 The Oklo Natural Fission Reactors

6.6 Research on Partitioning and Transmutation

6.6.1 Fast Reactors and Subcritical Reactors Driven by Particle Accelerators

6.6.2 Impact of Partitioning and Transmutation on Geological Disposal

References

Erratum to: Energy from Nuclear Fission

Glossary
Energy from Nuclear Fission
An Introduction
De Sanctis, E.; Monti, S.; Ripani, M.
2016, XV, 278 p. 55 illus., Hardcover
ISBN: 978-3-319-30649-0