3.2 Life and the Second Principle ... 68
3.3 Impossibility of Spontaneous Aggregation 72
3.4 Complexity and Information ... 73
3.4.1 Free energy for the Synthesis of Biomolecules 78
3.5 Against All Odds .. 80
3.6 Modern Theories About the Origins of Life on Earth 83
3.6.1 Not just a Bag of Molecules 86
3.6.2 The RNA World .. 87
3.6.3 Abiotic Hypotheses ... 89
3.6.4 Between Quiet and Thunder 89
3.6.5 And Still Thinking ... 96
Appendix B: From DNA to Proteins (and Back) 97
Problems .. 109
References .. 110

4 Energy Production and Storage for Life 113
4.1 From Food to ATP ... 113
4.2 Storage of Energy in the Cell ... 115
4.3 Energy-Converting Membranes 117
4.4 Krebs’ Cycle and the Production of ATP 121
4.4.1 The Role of the Enzymes ... 124
4.5 Electrons and Protons Flowing 128
4.6 Energy Yield in the Cycle .. 134
4.7 Temperature and Heat in the Animal Body 136
4.7.1 Temperature Monitoring .. 138
4.8 Heat from the Cells ... 140
4.8.1 Fever and Hyperthermia .. 144
4.8.2 Metabolic Rate and Thermogenesis 145
4.8.3 Of Brown Fat, Alternative Respiration, and Thermogenic Plants .. 147
Appendix C: The Molecules of Life ... 149
Problems .. 155
References .. 158

5 Entropic Forces in the Cell ... 159
5.1 Thermodynamic Forces .. 159
5.2 The Strange Case of Osmosis ... 161
5.2.1 Microscopic Model .. 163
5.2.2 Thermodynamic Model ... 164
5.2.3 Osmolarity and the Healthy Cell 165
5.3 Hydrophobicity, Depletion and Other Entropic Forces 167
5.3.1 The Depletion Force Between Large Objects in Solution .. 169
5.3.2 Steric Forces and Excluded Volume 172
Contents

5.4 Diffusion Across a Membrane ... 174
5.4.1 Permeability and the Partition Coefficient 181
5.5 Forced Flow in a Channel ... 182
5.6 Moving Around in a Fluid World .. 188
5.6.1 Brownian Swimmers ... 191
5.7 Squeezing Blood Cells in a Capillary 193
Appendix D: Membranes, Micelles and Liposomes 195
Problems .. 200
References ... 202

6 Molecular Motors in the Cell ... 205

6.1 Molecular Motors ... 205
6.2 The Mechanics of Cyclic Motor Proteins 207
6.2.1 Two-State Model of a Machine .. 211
6.2.2 Continuous Energy Surfaces ... 213
6.3 The Thermal Ratchet Model .. 216
6.4 Symmetry-Breaking Transformations 221
6.4.1 The Tubulin Code .. 224
6.5 Cell Shape and Cytoskeleton Polymerisation 226
6.5.1 Polymerisation Dynamics and the Treadmill Effect 227
6.6 Variations on a Theme of Polymers 229
6.6.1 Enzymatic Reactions and Kinetics 233
6.7 The Movement of Unicellular Organisms 236
6.7.1 Linear Translation with Drag .. 238
6.7.2 Rotatory Translation with Drag 240
6.7.3 Swimming Without Paddling .. 242
Appendix E: The Cytoskeleton ... 244
Problems .. 249
References ... 251

7 Bioelectricity, Hearts and Brains .. 253

7.1 Cells Processing Electromagnetic Information 253
7.1.1 The Eyes of a Plant .. 255
7.1.2 Birds and Flies Can See a Magnetic Field 256
7.1.3 The Neuron .. 257
7.1.4 The Neuromuscular Junction 260
7.2 The Electric Potential of the Membrane 262
7.2.1 Passive and Active Diffusion 262
7.2.2 The Nernst Equation ... 265
7.2.3 Polarisation of the Membrane 267
7.3 The Membrane as a Cable ... 271
7.4 Excitation of the Neurons ... 275
7.5 The Action Potential .. 278
7.5.1 The Hodgkin-Huxley Model of the Membrane 278
8 Molecular Mechanics of the Cell ... 317
 8.1 Elastic Models of Polymers ... 317
 8.1.1 The Freely-Jointed Chain ... 319
 8.1.2 The Worm-Like Chain .. 326
 8.2 Biological Polymers .. 328
 8.2.1 Bending Fluctuations and the Persistence Length 328
 8.2.2 Elasticity From Entropy ... 331
 8.2.3 Pulling Nanometers with Piconewtons 334
 8.3 Mechanics of the Cell Membrane 337
 8.3.1 The Minimal Free Energy Model 340
 8.3.2 A More Refined Curvature Model 342
 8.3.3 Temperature and Entropy Fluctuations 345
 8.4 Deformation Energy .. 347
 8.4.1 Membrane Protrusions and Cell Crawling 348
 8.4.2 The Shape of a Bacterium .. 351
 8.5 How a Cell Splits in Two .. 354
 8.5.1 Chromosome Condensation 356
 8.5.2 Assembly of the Mitotic Spindle 357
 8.5.3 Assembly of the Contractile Ring 361
Problems ... 364
References .. 365
9 The Materials of the Living ... 367
 9.1 Stress and Deformation .. 367
 9.1.1 The Biologist and the Engineer 371
 9.1.2 Brittle and Ductile .. 373
 9.2 The Viscoelastic Nature of Biological Materials 376
 9.3 Soft Tissues .. 381
 9.3.1 Where Soft Turns Hard ... 385
10 Of Limbs, Wings and Fins .. 423
10.1 Force and Movement Produced by a Muscle 423
10.2 Dynamics of Muscle Contraction 429
10.3 Mechanical Efficiency and Cyclic Contraction 430
 10.3.1 Cyclic Contraction 432
10.4 Optimised Muscles 433
 10.4.1 Aerobic and Anaerobic Muscles 435
10.5 The Flight of an Insect 438
 10.5.1 Synchronous and Asynchronous Muscles 440
 10.5.2 The Power Output of an Insect’s Muscle 442
 10.5.3 Simplified Aerodynamics of Flapping Wings 444
10.6 How to Choose Right Variables and Units 448
 10.6.1 Observables, Their Dimensions, and Their Measurement .. 451
10.7 Dimensional Analysis: Animals that Walk and Run 453
 10.7.1 More Variables and The Buckingham π-Theorem 456
10.8 Flying Animals and Wingbeat Frequency 459
 10.8.1 From Birds to Insects 463
10.9 Dimensional Analysis: Animals Who Live in Water 466
Problems .. 470
References .. 472

11 Shapes of the Living ... 475
11.1 Surface Forces and Volume Forces 475
11.2 Capillarity, Growing Trees and Water-Walkers 478
 11.2.1 Insects Who Can Walk on the Water 479
 11.2.2 The Branching of Trees 481
11.3 Curved Surfaces and Minimal Surfaces 484
 11.3.1 How the Space Can Be Filled 487
 11.3.2 Limiting Shapes, Stability and Instability 491
The Physics of Living Systems
Cleri, F.
2016, XXIV, 620 p. 204 illus., 173 illus. in color., Hardcover
ISBN: 978-3-319-30645-2