Contents

1 An Overview of Optical Wireless Communications 1
Z. Ghassemlooy, M. Uysal, M.A. Khalighi, V. Ribeiro, F. Moll,
S. Zvanovec and A. Belmonte

1.1 Introduction 2
1.2 Historical Overview and Current Status 5
1.3 Existing and Envisioned Application Areas 7
 1.3.1 Ultra Short Range OWC Applications. 9
 1.3.2 Short Range OWC Applications. 10
 1.3.3 Medium Range OWC Applications. 12
 1.3.4 Long Range OWC Applications. 14
 1.3.5 Ultra Long Range OWC Applications. 17
1.4 Conclusions 19
References 19

2 Optical Propagation in Unguided Media 25
Yahya Kemal Baykal

2.1 Introduction 25
2.2 Degrading Effects of Turbulence 26
2.3 Power Spectra of Turbulence in Free Space Optics (FSO),
 Slant Satellite and Underwater Links 27
2.4 Rytov Method 29
2.5 Extended Huygens–Fresnel Principle 32
2.6 Average Received Intensity 33
2.7 Intensity and Power Scintillation Index 33
2.8 Bit Error Rate 36
2.9 Beam Effects in Turbulent Medium 37
2.10 Mitigation Methods to Reduce Turbulence Effects 41
2.11 Sample Results 42
2.12 Conclusions and Future Directions 43
References 43
3 Effects of Adverse Weather on Free Space Optics 47
Roberto Nebuloni and Carlo Capsoni
3.1 Introduction ... 47
3.2 Gas Absorption .. 49
3.3 Propagation Through Atmospheric Particulates 49
3.3.1 Refractive Index of Water 51
3.3.2 Electromagnetic Computation: Mie Theory 51
3.3.3 Asymptotic Theories 52
3.4 Multiple Scattering Effects 53
3.5 Fog and Clouds .. 55
3.5.1 Fog Types ... 55
3.5.2 Cloud Types ... 56
3.5.3 Microphysical Characterization 57
3.5.4 Specific Attenuation 57
3.6 Rain ... 62
3.6.1 Microphysical Characterization 62
3.6.2 Specific Attenuation 63
3.7 Snow ... 64
3.7.1 Microphysical Characterization 64
3.7.2 Specific Attenuation 65
3.8 Conclusions and Recommendations 66
References .. 66

4 Experimental Validation of FSO Channel Models 69
Ondrej Fiser and Vladimir Brazda
4.1 Introduction ... 69
4.2 Total Attenuation 72
4.3 Measurement of Fog Attenuation 73
4.4 Modeling of DSD in Fog and Clouds 76
4.4.1 Experimental Data 77
4.4.2 Analysis of LWC and PSA 79
4.5 Rain Attenuation 80
4.6 Impact of Atmospheric Turbulences 82
4.7 Conclusion .. 83
References .. 84

5 Channel Characterization and Modeling for LEO-Ground Links ... 87
Florian Moll
5.1 Introduction ... 87
5.2 Atmospheric Turbulence 90
5.2.1 Scintillation ... 91
5.2.2 Fading Statistics 94
5.3 Measurements .. 96
 5.3.1 KIODO Campaign 96
 5.3.2 Instrument 97
 5.3.3 Results ... 99
5.4 Modeling Approach of Power Scintillation 100
5.5 Conclusions and Future Directions 103
References ... 103

6 Channel Modeling for Visible Light Communications 107
Farshad Miramirkhani, Murat Uysal and Erdal Panayirci
6.1 Introduction .. 107
6.2 Channel Modeling Approach 109
6.3 CIR for an Empty Room 111
6.4 Effect of Surface Materials, Objects, and Transmitter/Receiver Specifications on CIR 116
6.5 Conclusion ... 121
References ... 121

7 Diffraction Effects and Optical Beam Shaping in FSO Terminals 123
Juraj Poliak, Peter Barcik and Otakar Wilfert
7.1 Introduction .. 124
7.2 Wave Effects in OWC 124
7.3 Modeling of Diffraction Effects in Terrestrial FSO Links 125
7.4 Simulation, Assessment, and Discussion 129
7.5 Geometrical and Pointing Loss 131
7.6 Optical Beam Shaping 133
7.7 FG Beams and Transformation Techniques 134
7.8 FG Beam Propagation, Scintillation and Averaging Effect 135
7.9 Conclusion ... 141
References ... 141

8 Ultraviolet Scattering Communication Channels 145
Saverio Mori and Frank S. Marzano
8.1 Introduction .. 146
8.2 Historical and Technological Perspectives 147
8.3 Ultraviolet Channel Propagation Effects 148
 8.3.1 Non-Line-of-Sight Channel Geometry 148
 8.3.2 Tropospheric Ultraviolet Absorption and Scattering 149
 8.3.3 Tropospheric Turbulence and Ultraviolet Scintillation 154
8.4 Ultraviolet Scattering Channel Models 154
 8.4.1 Radiative Transfer in Turbid Media 156
 8.4.2 Single-Scattering Impulse Response and Path Loss Models 157
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.4.3</td>
<td>Multiple Scattering Numerical and Approximate Models</td>
<td>160</td>
</tr>
<tr>
<td>8.4.4</td>
<td>Turbulence Effects on Ultraviolet Propagation</td>
<td>163</td>
</tr>
<tr>
<td>8.5</td>
<td>Ultraviolet Experimental Results and System Analysis</td>
<td>164</td>
</tr>
<tr>
<td>8.5.1</td>
<td>NLOS-UV Measurements and Model Intercomparisons</td>
<td>164</td>
</tr>
<tr>
<td>8.5.2</td>
<td>NLOS-UV System Performance Analysis</td>
<td>165</td>
</tr>
<tr>
<td>8.6</td>
<td>Conclusions and Future Directions</td>
<td>167</td>
</tr>
<tr>
<td>References</td>
<td></td>
<td>167</td>
</tr>
<tr>
<td>9</td>
<td>Information Theoretical Limits of Free-Space Optical Links</td>
<td>171</td>
</tr>
<tr>
<td>9.1</td>
<td>Introduction</td>
<td>173</td>
</tr>
<tr>
<td>9.1.1</td>
<td>General Background</td>
<td>173</td>
</tr>
<tr>
<td>9.1.2</td>
<td>Motivation</td>
<td>175</td>
</tr>
<tr>
<td>9.1.3</td>
<td>Objectives and Contributions</td>
<td>176</td>
</tr>
<tr>
<td>9.1.4</td>
<td>Structure</td>
<td>177</td>
</tr>
<tr>
<td>9.2</td>
<td>System and Channel Models</td>
<td>177</td>
</tr>
<tr>
<td>9.2.1</td>
<td>Atmospheric Turbulences</td>
<td>177</td>
</tr>
<tr>
<td>9.2.2</td>
<td>Pointing Errors</td>
<td>182</td>
</tr>
<tr>
<td>9.2.3</td>
<td>Closed-Form Statistical Probability Density Functions (PDF)</td>
<td>188</td>
</tr>
<tr>
<td>9.2.4</td>
<td>Important Outcomes and Further Motivations</td>
<td>191</td>
</tr>
<tr>
<td>9.3</td>
<td>Exact Analysis</td>
<td>192</td>
</tr>
<tr>
<td>9.3.1</td>
<td>Gamma (G) Atmospheric Turbulence</td>
<td>192</td>
</tr>
<tr>
<td>9.3.2</td>
<td>Málaga (M) and Gamma–Gamma (GG) Atmospheric Turbulences</td>
<td>192</td>
</tr>
<tr>
<td>9.3.3</td>
<td>Double Generalized Gamma (DGG) Atmospheric Turbulence</td>
<td>193</td>
</tr>
<tr>
<td>9.3.4</td>
<td>Results and Discussion</td>
<td>194</td>
</tr>
<tr>
<td>9.4</td>
<td>Asymptotic Analysis</td>
<td>195</td>
</tr>
<tr>
<td>9.4.1</td>
<td>Rician–Lognormal (RLN) Atmospheric Turbulence with Boresight Pointing Errors</td>
<td>197</td>
</tr>
<tr>
<td>9.4.2</td>
<td>Gamma–Gamma (GG) Atmospheric Turbulence with Beckmann Pointing Errors</td>
<td>201</td>
</tr>
<tr>
<td>9.5</td>
<td>Conclusions and Future Directions</td>
<td>204</td>
</tr>
<tr>
<td>References</td>
<td></td>
<td>204</td>
</tr>
<tr>
<td>10</td>
<td>Performance Analysis of FSO Communications Under Correlated Fading Conditions</td>
<td>209</td>
</tr>
<tr>
<td>10.1</td>
<td>Introduction</td>
<td>210</td>
</tr>
<tr>
<td>10.2</td>
<td>Channel Modeling for FSO Communications</td>
<td>210</td>
</tr>
<tr>
<td>Section</td>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>10.2.1</td>
<td>Turbulence Modeling for a SISO FSO System</td>
<td>210</td>
</tr>
<tr>
<td>10.2.2</td>
<td>Channel Modeling for Space-Diversity FSO Systems</td>
<td>211</td>
</tr>
<tr>
<td>10.3</td>
<td>Evaluating Fading Correlation in Space-Diversity FSO Channels</td>
<td>211</td>
</tr>
<tr>
<td>10.3.1</td>
<td>Study of Fading Correlation for SIMO Case</td>
<td>212</td>
</tr>
<tr>
<td>10.3.2</td>
<td>Fading Correlation in MISO and MIMO Cases</td>
<td>218</td>
</tr>
<tr>
<td>10.4</td>
<td>Performance Evaluation Over Correlated (\Gamma) Channels via Monte-Carlo Simulations</td>
<td>219</td>
</tr>
<tr>
<td>10.4.1</td>
<td>Generation of Correlated (\Gamma) RVs</td>
<td>220</td>
</tr>
<tr>
<td>10.4.2</td>
<td>Study of BER Performance by Monte-Carlo Simulations</td>
<td>221</td>
</tr>
<tr>
<td>10.5</td>
<td>Analytical Performance Evaluation of FSO Over Correlated Channels</td>
<td>223</td>
</tr>
<tr>
<td>10.5.1</td>
<td>(x-\mu) Approximation to the Sum of Multiple (\Gamma) RVs</td>
<td>224</td>
</tr>
<tr>
<td>10.5.2</td>
<td>BER Analysis Based on (x-\mu) Approximation</td>
<td>225</td>
</tr>
<tr>
<td>10.5.3</td>
<td>Numerical Results</td>
<td>225</td>
</tr>
<tr>
<td>10.6</td>
<td>Conclusions</td>
<td>227</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>227</td>
</tr>
<tr>
<td>11</td>
<td>MIMO Free-Space Optical Communication</td>
<td>231</td>
</tr>
<tr>
<td>11.1</td>
<td>Introduction</td>
<td>231</td>
</tr>
<tr>
<td>11.2</td>
<td>Channel Modelling</td>
<td>233</td>
</tr>
<tr>
<td>11.2.1</td>
<td>Turbulence Statistics</td>
<td>236</td>
</tr>
<tr>
<td>11.2.2</td>
<td>FSO Links with Misalignment</td>
<td>237</td>
</tr>
<tr>
<td>11.3</td>
<td>MIMO FSO Diversity Techniques</td>
<td>238</td>
</tr>
<tr>
<td>11.3.1</td>
<td>Receive Diversity</td>
<td>238</td>
</tr>
<tr>
<td>11.3.2</td>
<td>Transmit Diversity</td>
<td>239</td>
</tr>
<tr>
<td>11.4</td>
<td>Performance of MIMO FSO Systems</td>
<td>241</td>
</tr>
<tr>
<td>11.4.1</td>
<td>Average Error Rate</td>
<td>242</td>
</tr>
<tr>
<td>11.4.2</td>
<td>Outage Probability</td>
<td>243</td>
</tr>
<tr>
<td>11.4.3</td>
<td>Diversity Gain</td>
<td>245</td>
</tr>
<tr>
<td>11.4.4</td>
<td>Aperture Averaging, Correlation, and Near-Field Effects</td>
<td>247</td>
</tr>
<tr>
<td>11.5</td>
<td>Distributed MIMO FSO</td>
<td>248</td>
</tr>
<tr>
<td>11.6</td>
<td>Conclusions and Future Directions</td>
<td>250</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>251</td>
</tr>
<tr>
<td>12</td>
<td>OFDM-Based Visible Light Communications</td>
<td>255</td>
</tr>
<tr>
<td>12.1</td>
<td>Introduction</td>
<td>256</td>
</tr>
<tr>
<td>12.2</td>
<td>Unipolar OFDM (U-OFDM)</td>
<td>258</td>
</tr>
<tr>
<td>12.2.1</td>
<td>Concept</td>
<td>258</td>
</tr>
<tr>
<td>12.2.2</td>
<td>Theoretical Bit Error Rate Analysis</td>
<td>263</td>
</tr>
<tr>
<td>12.2.3</td>
<td>Results and Discussion</td>
<td>270</td>
</tr>
</tbody>
</table>
12.3 Enhanced Unipolar Orthogonal Frequency Division Multiplexing (U-OFDM) .. 273
12.3.1 Concept .. 273
12.3.2 Spectral Efficiency 275
12.3.3 Theoretical Bit Error Rate Analysis 276
12.3.4 Results and Discussion 281
12.4 Superposition Modulation for Orthogonal Frequency Division Multiplexing (OFDM) 284
12.4.1 Generalised Enhanced Unipolar Orthogonal Frequency Division Multiplexing (U-OFDM) 285
12.4.2 Enhanced Asymmetrically-Clipped Optical OFDM (ACO-OFDM) 288
12.4.3 Enhanced Pulse-Amplitude-Modulated Discrete Multitone Modulation (PAM-DMT) 289
12.4.4 Results and Discussion 294
12.5 Conclusions and Future Directions 296
References .. 297

13 Block Transmission with Frequency Domain Equalization for VLC .. 299
Mike Wolf, Sher Ali Cheema and Martin Haardt
13.1 Introduction 299
13.2 Basic Modeling Aspects 301
13.2.1 Intensity Modulation and Direct Detection .. 301
13.2.2 NRZ-OOK Reference and Optical Power Penalty . 302
13.2.3 Power Penalty of PAM in a Flat AWGN Channel ... 303
13.2.4 Discrete Time PAM Transmission Model 305
13.3 PAM Block Transmission with Cyclic Prefix 306
13.3.1 An Example Illustrating the Cyclic Convolution . 306
13.3.2 A High Level Channel Model in Matrix-Vector Notation ... 307
13.3.3 Equalizer Coefficients 308
13.3.4 Impact of a Fixed Timing Error 311
13.4 How to Obtain DC-Balance 312
13.4.1 Line Coding 312
13.4.2 DC-Biased SSC-QAM and Similar Schemes 313
13.4.3 DC-Biased DMT 315
13.5 VLC Channel 316
13.6 Results ... 319
13.6.1 Performance in Gaussian Lowpass Channels 319
13.6.2 Performance in Multipath Channels 320
13.7 Conclusions 322
References .. 322
14 Satellite Downlink Coherent Laser Communications

Aniceto Belmonte and Joseph M. Kahn

- **14.1 Introduction.** 325
- **14.2 Adaptive Coherent Receivers.** 327
- **14.3 Performance of Coherent Laser Downlinks.** 332
- **14.4 Outage Capacity of Laser Downlinks.** 337
- **14.5 Conclusions.** 340

15 Cooperative Visible Light Communications

Omer Narmanlioglu, Refik Caglar Kizilirmak, Farshad Miramirkhani and Murat Uysal

- **15.1 Introduction.** 345
- **15.2 Indoor Environment with Illumination Constraints.** 347
- **15.3 VLC Indoor Channel Model.** 349
- **15.4 System Model.** 351
 - **15.4.1** Non-cooperative (Direct) Transmission 351
 - **15.4.2** AF Cooperative Transmission 352
 - **15.4.3** DF Cooperative Transmission 354
 - **15.4.4** Cooperative Transmission with Imperfect CSI 356
- **15.5 Numerical Results.** 357
- **15.6 Conclusion and Future Directions.** 361

16 Coded Orbital Angular Momentum Modulation and Multiplexing Enabling Ultra-High-Speed Free-Space Optical Transmission

Ivan B. Djordjevic and Zhen Qu

- **16.1 Introduction.** 364
- **16.2 OAM Modulation and Multiplexing Principles.** 365
- **16.3 Signal Constellation Design for OAM Modulation and Multidimensional Signaling Based on OAM.** 368
- **16.4 Experimental Study of Coded OAM in the Presence of Atmospheric Turbulence.** 372
- **16.5 Adaptive Coding for FSO Communications and Corresponding FPGA Implementation.** 378
- **16.6 Conclusion and Future Work.** 382

17 Mixed RF/FSO Relaying Systems

Milica I. Petkovic, Aleksandra M. Cvetkovic and Goran T. Djordjevic

- **17.1 Introduction.** 387
- **17.2 System and Channel Model.** 390
 - **17.2.1** RF Channel Model. 392
 - **17.2.2** FSO Channel Model. 394
17.3 Outage Probability Analysis ... 395
17.3.1 Negligible Pointing Errors .. 398
17.3.2 System with a Single Relay .. 398
17.4 Numerical Results ... 399
17.5 Conclusions and Future Directions 403
References ... 404

18 Dimming and Modulation for VLC-Enabled Lighting 409
Ali Mirvakili, Hany Elgala, Thomas D.C. Little
and Valencia J. Koomson
18.1 Introduction .. 410
18.2 Digital Modulation with Dimming Concepts 411
18.3 Digital Techniques .. 412
18.3.1 Data/Dimming Control Modulator 414
18.4 Circuit Architecture .. 415
18.4.1 Buck Converter Design ... 416
18.4.2 Data-Dimming Multiplication Method 419
18.4.3 Measurement Results of Digital Modulation
with Dimming .. 420
18.5 Analog Techniques ... 424
18.6 Conclusions and Future Directions 429
References ... 429

19 Diversity for Mitigating Channel Effects 431
Zabih Ghassemlooy, Wasiu Popoola and Stanislav Zvanovec
19.1 Introduction .. 432
19.2 Receiver Diversity in Log-Normal Atmospheric Channels 432
19.2.1 Maximum Ratio Combining (MRC) 434
19.2.2 Equal Gain Combining (EGC) 436
19.2.3 Selection Combining (SelC) 438
19.3 Transmitter Diversity in Log-Normal Atmospheric
Channels ... 439
19.4 Transmitter-Receiver Diversity in a Log-Normal
Atmospheric Channel ... 440
19.5 Results and Discussions of SIM-FSO with Spatial
Diversity in a Log-Normal Atmospheric Channel 441
19.6 Experimental Set-up .. 444
19.7 Outdoor Measurements of Diversity Links 447
19.8 Conclusions .. 450
References ... 450

20 Multiple Access in Visible Light Communication Networks 451
Melike Erol-Kantarci and Murat Uysal
20.1 Introduction .. 452
20.2 Overview of PHY and MAC Layer Design for VLC 453
20.3 IEEE 802.15.7 Channel Access Mechanisms 455
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>23.3 Advanced Modulation Formats and Pulse Shaping</td>
<td>517</td>
</tr>
<tr>
<td>23.4 High Data Rate Links with FSO</td>
<td>519</td>
</tr>
<tr>
<td>23.5 Multi System Next Generation and Fully Bidirectional Optical</td>
<td>521</td>
</tr>
<tr>
<td>Wireless Access</td>
<td></td>
</tr>
<tr>
<td>23.6 Concluding Remarks</td>
<td>523</td>
</tr>
<tr>
<td>References</td>
<td></td>
</tr>
<tr>
<td>24 Multiuser Diversity Scheduling: A New Perspective on the Future</td>
<td>527</td>
</tr>
<tr>
<td>Development of FSO Communications</td>
<td></td>
</tr>
<tr>
<td>Jamshid Abouei, Seyyed Saleh Hosseini and Konstantinos N. Plataniotis</td>
<td></td>
</tr>
<tr>
<td>24.1 Introduction</td>
<td>527</td>
</tr>
<tr>
<td>24.2 System Model and Assumptions</td>
<td>529</td>
</tr>
<tr>
<td>24.3 Multiuser Diversity in FSO Systems</td>
<td>532</td>
</tr>
<tr>
<td>24.3.1 Selective Multiuser Diversity Scheduling</td>
<td>534</td>
</tr>
<tr>
<td>24.3.2 Proportional Fair Scheduling</td>
<td>538</td>
</tr>
<tr>
<td>24.3.3 Proportional Fair Scheduling with Exponential Rule</td>
<td>539</td>
</tr>
<tr>
<td>24.3.4 SMDS/ER Policy</td>
<td>540</td>
</tr>
<tr>
<td>24.3.5 SMDS with Earlier Delay First Policy</td>
<td>541</td>
</tr>
<tr>
<td>24.4 Numerical Results</td>
<td>541</td>
</tr>
<tr>
<td>24.5 Conclusions and Future Directions</td>
<td>543</td>
</tr>
<tr>
<td>References</td>
<td>543</td>
</tr>
<tr>
<td>25 Optical Camera Communications</td>
<td>547</td>
</tr>
<tr>
<td>Zabih Ghassemlooy, Pengfei Luo and Stanislav Zvanovec</td>
<td></td>
</tr>
<tr>
<td>25.1 Introduction</td>
<td>547</td>
</tr>
<tr>
<td>25.2 OCC Concept</td>
<td>549</td>
</tr>
<tr>
<td>25.2.1 Transmitters</td>
<td>550</td>
</tr>
<tr>
<td>25.2.2 Receivers</td>
<td>552</td>
</tr>
<tr>
<td>25.3 Imaging MIMO</td>
<td>554</td>
</tr>
<tr>
<td>25.4 Modulation Schemes</td>
<td>556</td>
</tr>
<tr>
<td>25.4.1 OOK</td>
<td>556</td>
</tr>
<tr>
<td>25.4.2 Undersampled-Based Modulation</td>
<td>557</td>
</tr>
<tr>
<td>25.4.3 Rolling Shutter Effect-Based Modulation</td>
<td>560</td>
</tr>
<tr>
<td>25.4.4 LCD-Based Modulation</td>
<td>561</td>
</tr>
<tr>
<td>25.5 Application of OCC</td>
<td>562</td>
</tr>
<tr>
<td>25.5.1 Indoor Positioning</td>
<td>562</td>
</tr>
<tr>
<td>25.5.2 Vehicle-to-Vehicle and Vehicle-to-Infrastructure Communication</td>
<td>564</td>
</tr>
<tr>
<td>25.5.3 Other Applications</td>
<td>565</td>
</tr>
<tr>
<td>25.6 Conclusions</td>
<td>565</td>
</tr>
<tr>
<td>References</td>
<td>565</td>
</tr>
</tbody>
</table>
26 Optical Wireless Body Area Networks for Healthcare Applications
Anne Julien-Vergonjanne, Stéphanie Sahuguède and Ludovic Chevalier
26.1 Introduction ... 569
26.2 Optical On-Body Channel Modeling 572
 26.2.1 System Description 573
 26.2.2 Channel Gain Distribution 574
26.3 Optical WBAN Performance 576
 26.3.1 Optical CDMA-WBAN Error Probability 577
 26.3.2 Validation .. 580
26.4 Typical Optical CDMA-WBAN Scenario Analysis 581
 26.4.1 Optical WBAN Configuration 581
 26.4.2 Channel and Performance Analysis 583
26.5 Conclusions .. 585
References ... 586

27 Free-Space Quantum Key Distribution 589
Alberto Carrasco-Casado, Verónica Fernández and Natalia Denisenko
27.1 Introduction .. 589
27.2 Quantum Key Distribution Protocols 590
 27.2.1 BB84 Protocol ... 590
 27.2.2 B92 Protocol ... 592
27.3 Free-Space as the ‘Quantum’ Channel 593
 27.3.1 Transmission Through the Atmosphere 593
 27.3.2 Scattering, Absorption, and Weather Dependence 594
 27.3.3 Atmospheric Turbulence 597
27.4 Design of the Transmitter: Alice 598
 27.4.1 Choice of Wavelength and Source for the Transmitter . 599
 27.4.2 Optical Configuration of the Transmitter 599
 27.4.3 Temporal Synchronization 602
27.5 Design of the Receiver: Bob 602
 27.5.1 Optical Setup of the Receiver 602
 27.5.2 Single-Photon Detection 604
27.6 Results of the QKD System 605
 27.6.1 300-m Link Experiment 605
References ... 606

28 VLC-Based Indoor Localization 609
Gábor Fehér and Eszter Udvary
28.1 Introduction .. 609
28.2 Location Determining Methods 610
 28.2.1 Proximity Detection 610
 28.2.2 Triangulation ... 611
28.2.3 Trilateration 612
28.2.4 Location Patterning/Pattern Recognition 613
28.3 Accessing the Shared VLC Channel 614
 28.3.1 Time Division Multiple Access (TDMA) 614
 28.3.2 Frequency Division Multiple Access (FDMA) 614
 28.3.3 Code Division Multiple Access (CDMA) 615
28.4 Experimental VLC Localization Systems 616
 28.4.1 First VLC Positioning Systems Based on CoO Method ... 617
 28.4.2 CoO Method Extended with RSSI Measurements 618
 28.4.3 Radiation Model of the LED Light Source 618
 28.4.4 VLC Positioning Based on Landmarks 619
 28.4.5 VLC Positioning Systems with Advanced Transmitters and Receivers 620
28.5 Conclusions and Future Directions 620
 28.5.1 Recent Research on VLC Localization Systems ... 620
 28.5.2 Commercialization of VLC Localization Systems 621
References ... 621

Index .. 623
Optical Wireless Communications
An Emerging Technology
Uysal, M.; Capsoni, C.; Ghassemlooy, Z.; Boucouvalas, A.; Udvary, E. (Eds.)
2016, XX, 634 p. 290 illus., 188 illus. in color., Hardcover
ISBN: 978-3-319-30200-3