Contents

1 **An Overview of Optical Wireless Communications**
Z. Ghassemlooy, M. Uysal, M.A. Khalighi, V. Ribeiro, F. Moll,
S. Zvanovec and A. Belmonte
1.1 Introduction .. 2
1.2 Historical Overview and Current Status 5
1.3 Existing and Envisioned Application Areas 7
1.3.1 Ultra Short Range OWC Applications 9
1.3.2 Short Range OWC Applications 10
1.3.3 Medium Range OWC Applications 12
1.3.4 Long Range OWC Applications 14
1.3.5 Ultra Long Range OWC Applications 17
1.4 Conclusions ... 19
References .. 19

2 **Optical Propagation in Unguided Media**
Yahya Kemal Baykal
2.1 Introduction .. 25
2.2 Degrading Effects of Turbulence 26
2.3 Power Spectra of Turbulence in Free Space Optics (FSO),
Slant Satellite and Underwater Links 27
2.4 Rytov Method .. 29
2.5 Extended Huygens–Fresnel Principle 32
2.6 Average Received Intensity 33
2.7 Intensity and Power Scintillation Index 33
2.8 Bit Error Rate .. 36
2.9 Beam Effects in Turbulent Medium 37
2.10 Mitigation Methods to Reduce Turbulence Effects 41
2.11 Sample Results ... 42
2.12 Conclusions and Future Directions 43
References .. 43
3 Effects of Adverse Weather on Free Space Optics
Roberto Nebuloni and Carlo Capsoni

3.1 Introduction
3.2 Gas Absorption
3.3 Propagation Through Atmospheric Particulates
 3.3.1 Refractive Index of Water
 3.3.2 Electromagnetic Computation: Mie Theory
 3.3.3 Asymptotic Theories
3.4 Multiple Scattering Effects
3.5 Fog and Clouds
 3.5.1 Fog Types
 3.5.2 Cloud Types
 3.5.3 Microphysical Characterization
 3.5.4 Specific Attenuation
3.6 Rain
 3.6.1 Microphysical Characterization
 3.6.2 Specific Attenuation
3.7 Snow
 3.7.1 Microphysical Characterization
 3.7.2 Specific Attenuation
3.8 Conclusions and Recommendations

References

4 Experimental Validation of FSO Channel Models
Ondrej Fiser and Vladimir Brazda

4.1 Introduction
4.2 Total Attenuation
4.3 Measurement of Fog Attenuation
4.4 Modeling of DSD in Fog and Clouds
 4.4.1 Experimental Data
 4.4.2 Analysis of LWC and PSA
4.5 Rain Attenuation
4.6 Impact of Atmospheric Turbulences
4.7 Conclusion

References

5 Channel Characterization and Modeling for LEO-Ground Links
Florian Moll

5.1 Introduction
5.2 Atmospheric Turbulence
 5.2.1 Scintillation
 5.2.2 Fading Statistics
5.3 Measurements .. 96
 5.3.1 KIODO Campaign 96
 5.3.2 Instrument ... 97
 5.3.3 Results .. 99
5.4 Modeling Approach of Power Scintillation 100
5.5 Conclusions and Future Directions 103
References .. 103

6 Channel Modeling for Visible Light Communications 107
Farshad Miramirkhani, Murat Uysal and Erdal Panayirci
 6.1 Introduction .. 107
 6.2 Channel Modeling Approach 109
 6.3 CIR for an Empty Room 111
 6.4 Effect of Surface Materials, Objects,
 and Transmitter/Receiver Specifications on CIR 116
 6.5 Conclusion .. 121
References .. 121

7 Diffraction Effects and Optical Beam Shaping
in FSO Terminals .. 123
Juraj Poliak, Peter Barcik and Otakar Wilfert
 7.1 Introduction .. 124
 7.2 Wave Effects in OWC 124
 7.3 Modeling of Diffraction Effects in Terrestrial FSO Links 125
 7.4 Simulation, Assessment, and Discussion 129
 7.5 Geometrical and Pointing Loss 131
 7.6 Optical Beam Shaping 133
 7.7 FG Beams and Transformation Techniques 134
 7.8 FG Beam Propagation, Scintillation and Averaging Effect 135
 7.9 Conclusion .. 141
References .. 141

8 Ultraviolet Scattering Communication Channels 145
Saverio Mori and Frank S. Marzano
 8.1 Introduction ... 146
 8.2 Historical and Technological Perspectives 147
 8.3 Ultraviolet Channel Propagation Effects 148
 8.3.1 Non-Line-of-Sight Channel Geometry 148
 8.3.2 Tropospheric Ultraviolet Absorption and Scattering ... 149
 8.3.3 Tropospheric Turbulence and Ultraviolet
 Scintillation ... 154
 8.4 Ultraviolet Scattering Channel Models 154
 8.4.1 Radiative Transfer in Turbid Media 156
 8.4.2 Single-Scattering Impulse Response and Path Loss
 Models ... 157
8.4.3 Multiple Scattering Numerical and Approximate Models 160
8.4.4 Turbulence Effects on Ultraviolet Propagation 163
8.5 Ultraviolet Experimental Results and System Analysis 164
 8.5.1 NLOS-UV Measurements and Model Inter-comparisons 164
 8.5.2 NLOS-UV System Performance Analysis 165
8.6 Conclusions and Future Directions 167
References .. 167

9 Information Theoretical Limits of Free-Space Optical Links 171
Imran Shafique Ansari, Hessa AlQuwaiee, Emna Zedini and Mohamed-Slim Alouini
9.1 Introduction .. 173
 9.1.1 General Background .. 173
 9.1.2 Motivation .. 175
 9.1.3 Objectives and Contributions 176
 9.1.4 Structure .. 177
9.2 System and Channel Models 177
 9.2.1 Atmospheric Turbulences 177
 9.2.2 Pointing Errors ... 182
 9.2.3 Closed-Form Statistical Probability Density Functions (PDF) 188
 9.2.4 Important Outcomes and Further Motivations 191
9.3 Exact Analysis ... 192
 9.3.1 Gamma (G) Atmospheric Turbulence 192
 9.3.2 Málaga (M) and Gamma–Gamma (ΓΓ) Atmospheric Turbulences 192
 9.3.3 Double Generalized Gamma (DGG) Atmospheric Turbulence 193
 9.3.4 Results and Discussion 194
9.4 Asymptotic Analysis .. 195
 9.4.1 Rician–Lognormal (RLN) Atmospheric Turbulence with Boresight Pointing Errors 197
 9.4.2 Gamma–Gamma (ΓΓ) Atmospheric Turbulence with Beckmann Pointing Errors 201
9.5 Conclusions and Future Directions 204
References ... 204

10 Performance Analysis of FSO Communications Under Correlated Fading Conditions ... 209
Guowei Yang, Mohammad-Ali Khalighi, Zabih Ghassemlooy and Salah Bourennane
10.1 Introduction .. 210
10.2 Channel Modeling for FSO Communications 210
10.2.1 Turbulence Modeling for a SISO FSO System 210
10.2.2 Channel Modeling for Space-Diversity FSO Systems 211
10.3 Evaluating Fading Correlation in Space-Diversity FSO Channels 211
 10.3.1 Study of Fading Correlation for SIMO Case 212
 10.3.2 Fading Correlation in MISO and MIMO Cases 218
10.4 Performance Evaluation Over Correlated ΓΓ Channels via Monte-Carlo Simulations 219
 10.4.1 Generation of Correlated ΓΓ RVs 220
 10.4.2 Study of BER Performance by Monte-Carlo Simulations 221
10.5 Analytical Performance Evaluation of FSO Over Correlated Channels 223
 10.5.1 z−μ Approximation to the Sum of Multiple ΓΓ RVs 224
 10.5.2 BER Analysis Based on z−μ Approximation 225
 10.5.3 Numerical Results 225
10.6 Conclusions 227
References 227

11 MIMO Free-Space Optical Communication 231
Majid Safari
11.1 Introduction 231
11.2 Channel Modelling 233
 11.2.1 Turbulence Statistics 236
 11.2.2 FSO Links with Misalignment 237
11.3 MIMO FSO Diversity Techniques 238
 11.3.1 Receive Diversity 238
 11.3.2 Transmit Diversity 239
11.4 Performance of MIMO FSO Systems 241
 11.4.1 Average Error Rate 242
 11.4.2 Outage Probability 243
 11.4.3 Diversity Gain 245
 11.4.4 Aperture Averaging, Correlation, and Near-Field Effects 247
11.5 Distributed MIMO FSO 248
11.6 Conclusions and Future Directions 250
References 251

12 OFDM-Based Visible Light Communications 255
Dobroslav Tsonev, Mohamed Sufyan Islim and Harald Haas
12.1 Introduction 256
12.2 Unipolar OFDM (U-OFDM) 258
 12.2.1 Concept 258
 12.2.2 Theoretical Bit Error Rate Analysis 263
 12.2.3 Results and Discussion 270
12.3 Enhanced Unipolar Orthogonal Frequency Division Multiplexing (U-OFDM) ... 273
12.3.1 Concept .. 273
12.3.2 Spectral Efficiency .. 275
12.3.3 Theoretical Bit Error Rate Analysis 276
12.3.4 Results and Discussion 281

12.4 Superposition Modulation for Orthogonal Frequency Division Multiplexing (OFDM) 284
12.4.1 Generalised Enhanced Unipolar Orthogonal Frequency Division Multiplexing (U-OFDM) 285
12.4.2 Enhanced Asymmetrically-Clipped Optical OFDM (ACO-OFDM) ... 288
12.4.3 Enhanced Pulse-Amplitude-Modulated Discrete Multitone Modulation (PAM-DMT) 289
12.4.4 Results and Discussion 294

12.5 Conclusions and Future Directions 296

13 Block Transmission with Frequency Domain Equalization for VLC .. 299

Mike Wolf, Sher Ali Cheema and Martin Haardt
13.1 Introduction .. 299
13.2 Basic Modeling Aspects 301
13.2.1 Intensity Modulation and Direct Detection 301
13.2.2 NRZ-OOK Reference and Optical Power Penalty 302
13.2.3 Power Penalty of PAM in a Flat AWGN Channel ... 303
13.2.4 Discrete Time PAM Transmission Model 305

13.3 PAM Block Transmission with Cyclic Prefix 306
13.3.1 An Example Illustrating the Cyclic Convolution .. 306
13.3.2 A High Level Channel Model in Matrix-Vector Notation .. 307
13.3.3 Equalizer Coefficients 308
13.3.4 Impact of a Fixed Timing Error 311

13.4 How to Obtain DC-Balance 312
13.4.1 Line Coding .. 312
13.4.2 DC-Biased SSC-QAM and Similar Schemes 313
13.4.3 DC-Biased DMT .. 315

13.5 VLC Channel .. 316
13.6 Results .. 319
13.6.1 Performance in Gaussian Lowpass Channels 319
13.6.2 Performance in Multipath Channels 320

13.7 Conclusions .. 322

References .. 322
14 Satellite Downlink Coherent Laser Communications 325
Aniceto Belmonte and Joseph M. Kahn
14.1 Introduction .. 325
14.2 Adaptive Coherent Receivers 327
14.3 Performance of Coherent Laser Downlinks 332
14.4 Outage Capacity of Laser Downlinks 337
14.5 Conclusions .. 340
References .. 341

15 Cooperative Visible Light Communications 345
Omer Narmanlioglu, Refik Caglar Kızılirmak,
Farshad Miramirkhani and Murat Uysal
15.1 Introduction .. 345
15.2 Indoor Environment with Illumination Constraints 347
15.3 VLC Indoor Channel Model 349
15.4 System Model ... 351
15.4.1 Non-cooperative (Direct) Transmission 351
15.4.2 AF Cooperative Transmission 352
15.4.3 DF Cooperative Transmission 354
15.4.4 Cooperative Transmission with Imperfect CSI 356
15.5 Numerical Results 357
15.6 Conclusion and Future Directions 361
References .. 361

16 Coded Orbital Angular Momentum Modulation
and Multiplexing Enabling Ultra-High-Speed Free-Space
Optical Transmission .. 363
Ivan B. Djordjevic and Zhen Qu
16.1 Introduction .. 364
16.2 OAM Modulation and Multiplexing Principles 365
16.3 Signal Constellation Design for OAM Modulation
and Multidimensional Signaling Based on OAM 368
16.4 Experimental Study of Coded OAM in the Presence
of Atmospheric Turbulence 372
16.5 Adaptive Coding for FSO Communications and
Corresponding FPGA Implementation 378
16.6 Conclusion and Future Work 382
References .. 382

17 Mixed RF/FSO Relaying Systems 387
Milica I. Petkovic, Aleksandra M. Cvetkovic
and Goran T. Djordjevic
17.1 Introduction .. 387
17.2 System and Channel Model 390
17.2.1 RF Channel Model 392
17.2.2 FSO Channel Model 394
17.3 Outage Probability Analysis .. 395
17.3.1 Negligible Pointing Errors 398
17.3.2 System with a Single Relay 398
17.4 Numerical Results ... 399
17.5 Conclusions and Future Directions 403
References ... 404

18 Dimming and Modulation for VLC-Enabled Lighting 409
Ali Mirvakili, Hany Elgala, Thomas D.C. Little
and Valencia J. Koomson
18.1 Introduction .. 410
18.2 Digital Modulation with Dimming Concepts 411
18.3 Digital Techniques ... 412
18.3.1 Data/Dimming Control Modulator 414
18.4 Circuit Architecture .. 415
18.4.1 Buck Converter Design 416
18.4.2 Data-Dimming Multiplication Method 419
18.4.3 Measurement Results of Digital Modulation
with Dimming .. 420
18.5 Analog Techniques .. 424
18.6 Conclusions and Future Directions 429
References ... 429

19 Diversity for Mitigating Channel Effects 431
Zabih Ghassemlooy, Wasiu Popoola and Stanislav Zvanovec
19.1 Introduction .. 432
19.2 Receiver Diversity in Log-Normal Atmospheric Channels 432
19.2.1 Maximum Ratio Combining (MRC) 434
19.2.2 Equal Gain Combining (EGC) 436
19.2.3 Selection Combining (SelC) 438
19.3 Transmitter Diversity in Log-Normal Atmospheric
Channels ... 439
19.4 Transmitter-Receiver Diversity in a Log-Normal
Atmospheric Channel .. 440
19.5 Results and Discussions of SIM-FSO with Spatial
Diversity in a Log-Normal Atmospheric Channel 441
19.6 Experimental Set-up .. 444
19.7 Outdoor Measurements of Diversity Links 447
19.8 Conclusions .. 450
References ... 450

20 Multiple Access in Visible Light Communication Networks 451
Melike Erol-Kantarci and Murat Uysal
20.1 Introduction .. 452
20.2 Overview of PHY and MAC Layer Design for VLC 453
20.3 IEEE 802.15.7 Channel Access Mechanisms 455
20.4 Markov-Based Random Access Models for 802.15.7 456
20.5 Performance Evaluation for 802.15.7 MAC 458
20.6 Conclusion and Future Directions 460
References 460

21 Link Layer Protocols for Short-Range IR Communications 463
A.C. Boucouvalas and K.P. Peppas
21.1 Introduction 463
21.2 Irda Protocol Stack 465
 21.2.1 Physical Layer (PHY) 465
 21.2.2 Link Access Protocol (IrLAP) 468
 21.2.3 Link Management Protocol (IrLMP) 471
 21.2.4 Tiny Transport Protocol (TTP) 471
 21.2.5 Object Exchange Protocol (OBEX) 472
21.3 IrLAP Functional Model Description 472
21.4 IrLAP MATHEMATICAL MODEL 475
21.5 IrLAP THROUGHPUT ANALYSIS 479
21.6 Conclusions 482
References 482

22 On the Resilient Network Design of Free-Space Optical Wireless Network for Cellular Backhauling 485
Yuan Li, Nikolaos Pappas, Vangelis Angelakis, Michał Pióro and Di Yuan
22.1 Introduction 486
22.2 A Review of Related Works 488
22.3 Notations and Problem Definitions 489
22.4 Problem Formulation: A Two-Layer Model 491
22.5 A Path Generation-Based Heuristic Method 496
 22.5.1 A New Formulation Based on Paths 496
 22.5.2 Path Generation 497
 22.5.3 Framework of the Solution Approach 500
22.6 Experimental Results 502
 22.6.1 Channel Model 502
 22.6.2 The Study of a Deployment Scenario 503
 22.6.3 Algorithm Comparisons 505
22.7 Conclusions and Future Directions 508
References 508

23 FSO for High Capacity Optical Metro and Access Networks 511
Antonio Teixeira, Ali Shahpari, Vitor Ribeiro, Ricardo Ferreira, Artur Sousa, Somayeh Ziaie, Jacklyn Reis, Giorgia Parca, Silvia Dibartolo, Vincenzo Attanasio, Stefano Penna and Giorgio Maria Tosi Beleffi
23.1 Introduction 511
23.2 Terabit/s OWC for Next Generation Convergent Urban Infrastructures 512
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>23.3 Advanced Modulation Formats and Pulse Shaping</td>
<td>517</td>
</tr>
<tr>
<td>23.4 High Data Rate Links with FSO</td>
<td>519</td>
</tr>
<tr>
<td>23.5 Multi System Next Generation and Fully Bidirectional Optical</td>
<td>521</td>
</tr>
<tr>
<td>Wireless Access</td>
<td></td>
</tr>
<tr>
<td>23.6 Concluding Remarks</td>
<td>523</td>
</tr>
<tr>
<td>References</td>
<td></td>
</tr>
<tr>
<td>24 Multiuser Diversity Scheduling: A New Perspective on the Future</td>
<td>527</td>
</tr>
<tr>
<td>Development of FSO Communications</td>
<td></td>
</tr>
<tr>
<td>Jamshid Abouei, Seyyed Saleh Hosseini and Konstantinos N. Plataniotis</td>
<td></td>
</tr>
<tr>
<td>24.1 Introduction</td>
<td>527</td>
</tr>
<tr>
<td>24.2 System Model and Assumptions</td>
<td>529</td>
</tr>
<tr>
<td>24.3 Multiuser Diversity in FSO Systems</td>
<td>532</td>
</tr>
<tr>
<td>24.3.1 Selective Multiuser Diversity Scheduling</td>
<td>534</td>
</tr>
<tr>
<td>24.3.2 Proportional Fair Scheduling</td>
<td>538</td>
</tr>
<tr>
<td>24.3.3 Proportional Fair Scheduling with Exponential Rule</td>
<td>539</td>
</tr>
<tr>
<td>24.3.4 SMDS/ER Policy</td>
<td>540</td>
</tr>
<tr>
<td>24.3.5 SMDS with Earlier Delay First Policy</td>
<td>541</td>
</tr>
<tr>
<td>24.4 Numerical Results</td>
<td>541</td>
</tr>
<tr>
<td>24.5 Conclusions and Future Directions</td>
<td>543</td>
</tr>
<tr>
<td>References</td>
<td>543</td>
</tr>
<tr>
<td>25 Optical Camera Communications</td>
<td>547</td>
</tr>
<tr>
<td>Zabih Ghassemlooy, Pengfei Luo and Stanislav Zvanovec</td>
<td></td>
</tr>
<tr>
<td>25.1 Introduction</td>
<td>547</td>
</tr>
<tr>
<td>25.2 OCC Concept</td>
<td>549</td>
</tr>
<tr>
<td>25.2.1 Transmitters</td>
<td>550</td>
</tr>
<tr>
<td>25.2.2 Receivers</td>
<td>552</td>
</tr>
<tr>
<td>25.3 Imaging MIMO</td>
<td>554</td>
</tr>
<tr>
<td>25.4 Modulation Schemes</td>
<td>556</td>
</tr>
<tr>
<td>25.4.1 OOK</td>
<td>556</td>
</tr>
<tr>
<td>25.4.2 Undersampled-Based Modulation</td>
<td>557</td>
</tr>
<tr>
<td>25.4.3 Rolling Shutter Effect-Based Modulation</td>
<td>560</td>
</tr>
<tr>
<td>25.4.4 LCD-Based Modulation</td>
<td>561</td>
</tr>
<tr>
<td>25.5 Application of OCC</td>
<td>562</td>
</tr>
<tr>
<td>25.5.1 Indoor Positioning</td>
<td>562</td>
</tr>
<tr>
<td>25.5.2 Vehicle-to-Vehicle and Vehicle-to-Infrastructure Communication</td>
<td>564</td>
</tr>
<tr>
<td>25.5.3 Other Applications</td>
<td>565</td>
</tr>
<tr>
<td>25.6 Conclusions</td>
<td>565</td>
</tr>
<tr>
<td>References</td>
<td>565</td>
</tr>
</tbody>
</table>
28.2.3 Trilateration .. 612
28.2.4 Location Patterning/Pattern Recognition 613
28.3 Accessing the Shared VLC Channel 614
 28.3.1 Time Division Multiple Access (TDMA) 614
 28.3.2 Frequency Division Multiple Access (FDMA) 614
 28.3.3 Code Division Multiple Access (CDMA) 615
28.4 Experimental VLC Localization Systems 616
 28.4.1 First VLC Positioning Systems Based on CoO Method .. 617
 28.4.2 CoO Method Extended with RSSI Measurements ... 618
 28.4.3 Radiation Model of the LED Light Source 618
 28.4.4 VLC Positioning Based on Landmarks 619
 28.4.5 VLC Positioning Systems with Advanced Transmitters and Receivers 620
28.5 Conclusions and Future Directions 620
 28.5.1 Recent Research on VLC Localization Systems ... 620
 28.5.2 Commercialization of VLC Localization Systems .. 621
References .. 621

Index ... 623
Optical Wireless Communications
An Emerging Technology
Uysal, M.; Capsoni, C.; Ghassemlooy, Z.; Boucouvalas, A.; Udvary, E. (Eds.)
2016, XX, 634 p. 290 illus., 188 illus. in color., Hardcover
ISBN: 978-3-319-30200-3