Contents

1 Introduction ... 1
 1.1 Microfluidic Biochips ... 1
 1.2 mVLSI Technology ... 3
 1.2.1 Application Areas 4
 1.2.2 Motivation for Automated Physical Design and
 Testing Techniques 6
 1.2.3 Motivation for Programming and Control of mVLSI
 Biochips .. 8
 1.3 Overview .. 8
 References .. 10

Part I Preliminaries

2 Design Methodology for Flow-Based Microfluidic Biochips 15
 2.1 Modeling and Simulation 17
 2.2 Physical Design and Testing 20
 2.3 Programming and Control 23
 References .. 25

3 Biochip Architecture Model 29
 3.1 Microfluidic Valve ... 29
 3.2 Component Design ... 31
 3.2.1 Pneumatic Switches 31
 3.2.2 Pneumatic Mixer 31
 3.3 Illustrative Example .. 33
 3.4 Component Model and Library 35
 3.4.1 Component Model 35
 3.4.2 Component Model Library 36
 3.5 System-Level Architecture Model 36
3.6 On-Chip Control
- 3.6.1 Pneumatic Logical Components
- 3.6.2 Supportive Components
- 3.6.3 Logical Circuits
- 3.6.4 Logic Truth Tables

References

4 Biochemical Application Modeling
- 4.1 High-Level Protocol Language: Aqua
 - 4.1.1 Declarations
 - 4.1.2 Statements
- 4.2 Biochemical Application Model
- 4.3 Benchmarks
 - 4.3.1 Real-Life Benchmarks
 - 4.3.2 Synthetic Benchmarks

References

Part II Compilation

5 Compiling High-Level Languages
- 5.1 Problem Formulation
- 5.2 Application Model Synthesis
 - 5.2.1 High-Level Language Grammar
 - 5.2.2 Generating the Application Graph
- 5.3 Solving the Mixing Problem

References

6 Application Mapping and Simulation
- 6.1 Application Mapping
 - 6.1.1 Problem Formulation
- 6.2 Constraint Programming Strategy
 - 6.2.1 Finite Domain Variables
 - 6.2.2 Resource Binding Constraints
 - 6.2.3 Resource Sharing Constraints
 - 6.2.4 Precedence Constraints
 - 6.2.5 Cost Function
- 6.3 List Scheduling Strategy
 - 6.3.1 Route Generation
 - 6.3.2 Optimization
- 6.4 Experimental Evaluation
- 6.5 Simulation

References
7 Control Synthesis and Pin-Count Minimization .. 111
 7.1 Biochip Control Synthesis ... 113
 7.1.1 Control Logic Generation ... 116
 7.1.2 Pin-Count Minimization .. 117
 7.1.3 Problem Formulation ... 119
 7.2 Synthesis Strategy ... 119
 7.2.1 Control Logic Generation ... 119
 7.2.2 Pin-Count Minimization .. 120
 7.3 Experimental Evaluation ... 122
References .. 124

Part III Physical Design

8 Allocation and Schematic Design ... 127
 8.1 Problem Formulation .. 128
 8.2 Allocation and Schematic Design ... 129
 8.2.1 Allocation and Schematic Design ... 129
 8.3 Synthesis Strategy ... 131
 8.3.1 Allocation ... 131
 8.3.2 Schematic Design .. 134
 8.4 Experimental Evaluation ... 136
References .. 144

9 Placement and Routing .. 145
 9.1 Models, Component Library, and Design Rules 146
 9.1.1 Connection Model ... 148
 9.1.2 Grid Graph Model ... 148
 9.1.3 Route Model ... 150
 9.2 Problem Formulation .. 151
 9.2.1 Formalization ... 152
 9.3 Simulated Annealing ... 152
 9.3.1 Concept ... 152
 9.3.2 Implementation .. 153
 9.4 Approximated Cost Function .. 157
 9.4.1 Metrics ... 158
 9.4.2 Computing the Cost Function ... 160
 9.5 Routed Cost Function .. 162
 9.5.1 Routing Algorithms ... 162
 9.5.2 Metrics ... 166
 9.5.3 Computing the Cost Function ... 169
 9.6 Experimental Evaluation ... 175
 9.6.1 Benchmarks ... 176
 9.6.2 Placement Quality ... 176
 9.6.3 Performance ... 180
References .. 182
10 On-Chip Control Synthesis .. 183
 10.1 Circuit Design .. 185
 10.1.1 Ongoing Example. ... 186
 10.1.2 Two-Level Minimization .. 187
 10.1.3 Multiple-Level Optimization 193
 10.1.4 Library Binding ... 197
 10.2 Control Synthesis .. 204
 10.2.1 Component Control Logic Generation 204
 10.2.2 Routing Control Logic Generation 206
 10.3 Physical Synthesis .. 209
 10.3.1 Placement ... 211
 10.3.2 Routing ... 215
 10.4 Evaluation ... 227
 10.5 Benchmarks ... 228
 10.5.1 Evaluation of the Circuit Design 229
 10.5.2 Evaluation of the Placement Step 231
 10.5.3 Evaluation of the Routing Step 232
 10.6 On-Chip and Off-Chip Trade-Off 233
 10.7 On-Chip Control Circuits ... 238
 References ... 238

11 Testing and Fault-Tolerant Design 241
 11.1 Fault Model and Testing ... 242
 11.1.1 Fault Model ... 242
 11.1.2 Testing ... 246
 11.1.3 Fault-Tolerant Architecture Synthesis 246
 11.1.4 Design Transformations .. 250
 11.1.5 Simulated Annealing ... 251
 11.1.6 GRASP ... 254
 11.1.7 Architecture Evaluation .. 258
 11.2 Experimental Evaluation .. 263
 References ... 267

Index ... 269
Microfluidic Very Large Scale Integration (VLSI)
Modeling, Simulation, Testing, Compilation and Physical
Synthesis
Pop, P.; Minhas, W.H.; Madsen, J.
2016, XV, 270 p. 148 illus., 101 illus. in color.,
Hardcover
ISBN: 978-3-319-29597-8