Contents

1 Investment in Generation and Transmission Facilities 1
 1.1 Long-Term Decision Making Under Uncertainty 1
 1.2 Electricity Markets ... 4
 1.3 Transmission Expansion Planning 7
 1.4 Generation Investment .. 9
 1.5 Generation and Transmission Expansion Planning 12
 1.6 Investment Valuation and Timing 14
 1.7 What We Do and What We Do Not Do 15
 1.8 End-of-Chapter Exercises 16
 References .. 17

2 Transmission Expansion Planning ... 21
 2.1 Introduction .. 21
 2.2 Deterministic Approach ... 24
 2.2.1 Notation ... 25
 2.2.2 MINLP Model Formulation 26
 2.2.3 Linearization of Products of Binary
 and Continuous Variables 32
 2.2.4 MILP Model Formulation 32
 2.3 Robust Approach .. 38
 2.3.1 Adaptive Robust Optimization Formulation 39
 2.3.2 Definition of Uncertainty Sets 40
 2.3.3 Feasibility of Operating Decision Variables 41
 2.3.4 Detailed Formulation 41
 2.3.5 Solution Procedure 43
 2.4 Summary .. 53
 2.5 End-of-Chapter Exercises 53
 2.6 GAMS Code .. 56
 References .. 58
3 Generation Expansion Planning ... 61
3.1 Introduction ... 61
3.2 Problem Description.. 63
 3.2.1 Notation ... 63
 3.2.2 Aim and Assumptions .. 65
 3.2.3 Time Framework ... 65
 3.2.4 Operating Conditions .. 67
 3.2.5 Uncertainty Characterization 68
 3.2.6 Modeling of the Transmission Network 69
 3.2.7 Complementarity Model ... 69
3.3 Deterministic Single-Node Static GEP 70
 3.3.1 Complementarity Model ... 71
 3.3.2 Equivalent NLP Formulation 74
 3.3.3 Equivalent MILP Formulation 76
 3.3.4 Meaning of Dual Variables λ_o 79
3.4 Deterministic Single-Node Dynamic GEP 80
3.5 Deterministic Network-Constrained Static GEP 83
 3.5.1 Complementarity Model ... 84
 3.5.2 Equivalent MILP Formulation 87
 3.5.3 Meaning of Dual Variables λ_{no} 91
3.6 Stochastic Single-Node GEP .. 91
 3.6.1 Static Model Formulation ... 92
 3.6.2 Dynamic Model Formulation 96
3.7 Summary and Conclusions ... 106
3.8 End-of-Chapter Exercises .. 106
3.9 GAMS Codes .. 108
References ... 113
4 Generation and Transmission Expansion Planning 115
4.1 Introduction ... 115
4.2 Problem Description.. 117
 4.2.1 Notation ... 117
 4.2.2 Approach ... 119
 4.2.3 Risk Management ... 119
4.3 Deterministic Static G&TEP .. 120
 4.3.1 MINLP Formulation ... 120
 4.3.2 MILP Formulation ... 124
4.4 Deterministic Dynamic G&TEP ... 125
4.5 Stochastic G&TEP ... 131
 4.5.1 Static Approach .. 132
 4.5.2 Dynamic Approach ... 137
4.6 Stochastic Dynamic Risk-Constrained G&TEP 152
 4.6.1 Formulation .. 153
4.7 Summary and Conclusions ... 161
Investment in Electricity Generation and Transmission Decision Making under Uncertainty
2016, XIV, 384 p. 89 illus., 10 illus. in color., Hardcover
ISBN: 978-3-319-29499-5