Contents

1 Introduction. General Principles of Description of Two-Phase Systems .. 1
 1.1 Two-Phase Systems ... 1
 1.2 Methods of Mathematical Description of Two-Phase Systems .. 3
 1.2.1 Detailed Description .. 3
 1.2.2 Unit Cell Models .. 4
 1.2.3 Single Continuum Models .. 5
 1.2.4 Models of Multispeed Medium 7
 1.3 Incorporation of Phases .. 11
 1.3.1 Coordinate Systems .. 11
 1.3.2 Coupling Conditions ... 13
 1.4 Intensity of Phase Transitions ... 20
 1.4.1 Quasi-Equilibrium Scheme .. 20
 1.4.2 Phase Transitions ... 22
 1.5 The Structure of the Book ... 27
References .. 33

2 Dynamics of Bubbles in an Infinite Volume of Liquid 35
 2.1 The Problems of Force Controlled Bubble Evolutions 35
 2.2 The Rayleigh-Lamb Equation ... 38
 2.3 Collapse of a Vapour Bubble .. 42
 2.3.1 Change of the Bubble Radius in Time 42
 2.3.2 The Pressure Field in the Liquid 47
 2.3.3 The Influence of Capillary Effects and Viscosity Forces ... 51
 2.4 Dynamic Growth of Vapour Bubble 54
 2.4.1 The Effect of Inertial Forces 55
 2.4.2 The Effect of the Surface Tension Forces 58
 2.4.3 The Effect of Viscosity Forces 61
3 Pulsations of Bubbles

3.1 The Problem Under Consideration

3.2 The Mathematical Model

3.2.1 The Statement of the Problem

3.2.2 The Mathematical Description

3.3 Solution

3.3.1 Linearization of the Equations

3.3.2 Bubble Fundamental Frequency

3.3.3 Solution of the Problem

3.4 Consideration of the Results of the Analysis

3.4.1 Set of Similarity Numbers

3.4.2 Oscillation of the Internal Parameters

3.4.3 The Possibility of the Polytropic Approximation

3.4.4 Oscillations of the External Pressure and Resonance

3.5 Pulsation at Stepwise Variation of Pressure (the Adiabatic Approximation)

3.5.1 Dynamic Analysis

3.5.2 Energy Analysis

3.5.3 Discussion

3.6 Conclusions

4 Thermally Controlled Bubble Growth

4.1 The Mathematical Formulation of the Thermal Bubble Growth Problem

4.2 Dimensional Analysis

4.3 Historical Background

4.3.1 Early Works

4.3.2 Searching for Solution of the Boundary Value Problem

4.3.3 Self-similarity Solutions

4.4 The General Analytical Solution

4.4.1 Solution in the Integral Form

4.4.2 Analytical Solution

4.4.3 Analysis of the Results

4.5 The Asymptotic Laws of Bubble Growth

4.6 Conclusions
5 Bubble Growth, Condensation (Dissolution) in Turbulent Flows

5.1 The Influence of Turbulence on the Dynamics of Bubbles Drifting in a Forced Flow 133
5.1.1 The Problem 133
5.1.2 Experimental Investigations 134
5.1.3 Design Formulas 139
5.2 Theoretical Analysis 143
5.2.1 The Laws of Turbulent Motions 143
5.2.2 Surface Renewal and Penetration Model 155
5.2.3 Derivation of Relations for the Interfacial Heat and Mass Transfer 159
5.3 Discussion of the Results 164
5.3.1 Comparison with Experiment 164
5.3.2 The Limits of Applicability of the Model 169
5.4 Conclusions 178

References .. 179

6 Phase Transitions in Nonequilibrium Bubble Flows

6.1 Vapour Generation in the Flows of Flashing Liquid 181
6.1.1 Accumulation of Bubbles 181
6.1.2 Size of Bubbles 185
6.1.3 Rate of Nucleation 188
6.2 Condensation in Flows of Subcooled Liquid with Continuous Vapour Supply 190
6.3 The Differential Form of the Equations for the Phase Transitions Rate 193
6.3.1 Rate of Vapour Generation 193
6.3.2 Rate of Vapour Condensation 196
6.4 Analytical Study of Condensation in Bubble Flows 198
6.4.1 Simplification of the Model 198
6.4.2 Analytical Solutions 201
6.4.3 Analysis of the Results 202
6.5 Conclusions 207

References .. 207

7 Flashing Choked Flows

7.1 The Place of the Critical Two-Phase Flows in Science and Technology 209
7.1.1 Critical Discharge of Subcooled and Saturated Liquids .. 209
7.1.2 Design Methods 211
7.1.3 Experimental Studies 217
7.2 The Physical Model of the Process 220
7.3 Mathematical Description of the Problem and the Method of Solution ... 226
7.4 Discussion of the Results of Calculation 231
7.5 Generalization of Numerical Results and Experimental Data .. 237
 7.5.1 The Objective of This Section 237
 7.5.2 Thermodynamic Similarity 238
 7.5.3 The Development of the Generalized Correlation 243
 7.5.4 Comparison of the Generalized Correlation with Experiment .. 246
7.6 Relation Between the Flow Rate and the Reactive Force 249
 7.6.1 The Model of the Flow in the Channel Inlet Section .. 249
 7.6.2 The Substance of the Jet Propulsion Displacement Method ... 253
 7.6.3 Verification of JPD Method 258
7.7 Conclusions .. 261
References .. 262

8 Theory of Boiling Shock .. 265
 8.1 The Concept of Boiling Shock 265
 8.2 Theoretical Analysis of the Boiling Shock Gasdynamics 271
 8.2.1 Thermodynamics of Boiling Shock 273
 8.2.2 Evolutionarity of Boiling Shock 278
 8.2.3 Corrugation Instability of Boiling Shock 283
 8.3 Peculiarities of the S-Shock 284
 8.3.1 Liquid Stability .. 284
 8.3.2 Mechanism of Flow Choking 288
 8.3.3 Structure of the Front of the S-Shock 296
 8.3.4 Peculiarities of Formation of Daisy-Shape Jets 301
 8.3.5 Pulsations of Parameters 311
 8.4 Peculiarities of the U-Shock 314
 8.4.1 Boiling Shock Propagation Velocity in a Bulk of Hot Liquid .. 314
 8.4.2 Stability and Pressure Undershoot 318
 8.5 Conclusions .. 324
References .. 325

9 Bubble Rise in the Gravity Field 329
 9.1 The Problem of the Bubble Emersion in a Bulk of Liquid 329
 9.2 Similarity Criteria ... 330
 9.3 Analysis ... 333
 9.3.1 The Results of Experiments 333
 9.3.2 Spherical Bubbles .. 334
 9.3.3 Ellipsoidal Bubbles ... 342
11.4 Maximum Bubble Diameter During Subcooled Flow Boiling
 11.4.1 Mechanisms of Growth and Condensation of Sliding Bubbles
 11.4.2 The Effect of the Principal Regime Parameters
11.5 Pressure Drop During Subcooled Flow Boiling
 11.5.1 Undeveloped Surface Boiling
 11.5.2 Developed Surface Boiling
 11.5.3 Comparison with Experiment
11.6 Heat Transfer and Pressure Drop During Subcooled Flow Film Boiling
 11.6.1 The Use of Film Boiling Heat Transfer for High-Performance Cooling
 11.6.2 Features of Reynolds Analogy for Subcooled Flow Film Boiling
 11.6.3 Analysis of the Results
11.7 Conclusions
References
Bubble Systems
Avdeev, A.A.
2016, XIX, 466 p. 157 illus., Hardcover
ISBN: 978-3-319-29286-1