Contents

1 Introduction .. 1
 1.1 Linking individuals, traits, and population dynamics 1
 1.2 Survey of research applications 2
 1.3 About this book .. 3
 1.3.1 Mathematical prerequisites 4
 1.3.2 Statistical prerequisites and data requirements 5
 1.3.3 Programming prerequisites 5
 1.4 Notation and nomenclature 6

2 Simple Deterministic IPM 9
 2.1 The individual-level state variable 9
 2.2 Key assumptions and model structure 10
 2.3 From life cycle to model: specifying a simple IPM 12
 2.3.1 Changes ... 15
 2.4 Numerical implementation 17
 2.5 Case study 1A: A monocarpic perennial 19
 2.5.1 Summary of the demography 19
 2.5.2 Individual-based model (IBM) 21
 2.5.3 Demographic analysis using lm and glm 22
 2.5.4 Implementing the IPM 24
 2.5.5 Basic analysis: projection and asymptotic behavior 26
 2.5.6 Always quantify your uncertainty! 30
 2.6 Case study 2A: Ungulate 32
 2.6.1 Summary of the demography 33
 2.6.2 Individual-based model 34
 2.6.3 Demographic analysis 35
 2.6.4 Implementing the IPM 36
 2.6.5 Basic analysis 39
 2.7 Model diagnostics .. 41
 2.7.1 Model structure 42
 2.7.2 Demographic rate models 42
3 Basic Analyses 1: Demographic Measures and Events in the Life Cycle 57
 3.1 Demographic quantities 57
 3.1.1 Population growth 58
 3.1.2 Age-specific vital rates 62
 3.1.3 Generation time 63
 3.2 Life cycle properties and events 65
 3.2.1 Mortality: age and size at death 66
 3.2.2 Reproduction: who, when, and how much? 70
 3.2.3 And next.. 73
 3.3 Case study 1B: Monocarp life cycle properties and events 74
 3.3.1 Population growth 74
 3.3.2 Mortality: age and size at death calculations 75
 3.3.3 Reproduction: who, when, and how much? 78
 3.4 Appendix: Derivations 82

4 Basic Analyses 2: Prospective Perturbation Analysis 87
 4.1 Introduction ... 87
 4.2 Sensitivity and elasticities 88
 4.3 Sensitivity analysis of population growth rate 88
 4.3.1 Kernel-level perturbations 89
 4.3.2 Vital rate functions 93
 4.3.3 Parameters and lower-level functions 94
 4.4 Case Study 2B: Ungulate population growth rate 96
 4.4.1 Kernel-level perturbations 96
 4.4.2 Vital rate functions 98
 4.4.3 Parameters and lower-level functions 103
 4.5 Sensitivity analysis of life cycle properties and events .. 106
 4.6 Case Study 2B (continued): Ungulate life cycle 108

5 Density Dependence .. 111
 5.1 Introduction ... 111
 5.2 Modeling density dependence: recruitment limitation 112
 5.3 Modeling density dependence: Idaho steppe 115
 5.4 Theory .. 121
 5.4.1 Persistence or extinction? 122
 5.4.2 Local stability of equilibria 126
5.4.3 Equilibrium perturbation analysis 127
5.4.4 Density dependence and environmental stochasticity 128
5.5 Case study 2C: ungulate competition 128
5.6 Coda .. 136
5.7 Appendix: Mean field approximations for neighborhood competition.. 136

6 General Deterministic IPM .. 139
 6.1 Overview .. 139
 6.2 Case study 2D: ungulate age-size structure 140
 6.2.1 Structure of an age-size IPM 141
 6.2.2 Individual-based model and demographic analysis 142
 6.2.3 Implementing the model .. 144
 6.3 Specifying a general IPM .. 148
 6.4 Examples .. 150
 6.4.1 Seeds and plants ... 150
 6.4.2 Susceptible and Infected ... 151
 6.4.3 Time delays .. 152
 6.4.4 Individual quality and size 152
 6.4.5 Stage structure with variable stage durations 154
 6.5 Stable population growth .. 155
 6.5.1 Assumptions for stable population growth 156
 6.5.2 Alternate stable states ... 159
 6.5.3 Time delay models .. 159
 6.6 Numerical implementation .. 160
 6.6.1 Computing eigenvalues and eigenvectors 160
 6.6.2 Implementing a size-quality model 162
 6.7 Case Study 2D: Age-size structured ungulate, further calculations .. 167
 6.7.1 Population growth rate ... 167
 6.7.2 Other demographic measures 169
 6.7.3 Consequences of age-structure 170
 6.8 Other ways to compute integrals 171
 6.9 Appendix: the details .. 180
 6.9.1 Derivations ... 183

7 Environmental Stochasticity .. 187
 7.1 Why environmental stochasticity matters 187
 7.1.1 Kernel selection versus parameter selection 188
 7.2 Case Study 1C: Another monocarpic perennial 189
 7.2.1 Building an IPM .. 191
 7.2.2 Basic analyses by projection 193
 7.3 Modeling temporal variation .. 195
 7.3.1 Fixed versus random effects 195
 7.4 Long-run growth rate ... 201
 7.4.1 Implementation .. 204
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.5</td>
<td>Sensitivity and elasticity analysis</td>
<td>206</td>
<td></td>
</tr>
<tr>
<td>7.5.1</td>
<td>Kernel perturbations</td>
<td>209</td>
<td></td>
</tr>
<tr>
<td>7.5.2</td>
<td>Function perturbations</td>
<td>211</td>
<td></td>
</tr>
<tr>
<td>7.5.3</td>
<td>Parameter perturbations</td>
<td>214</td>
<td></td>
</tr>
<tr>
<td>7.6</td>
<td>Life Table Response Experiment (LTRE) Analysis</td>
<td>218</td>
<td></td>
</tr>
<tr>
<td>7.7</td>
<td>Events in the life cycle</td>
<td>221</td>
<td></td>
</tr>
<tr>
<td>7.8</td>
<td>Appendix: the details</td>
<td>223</td>
<td></td>
</tr>
<tr>
<td>7.8.1</td>
<td>Derivations</td>
<td>227</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Spatial Models</td>
<td>229</td>
<td></td>
</tr>
<tr>
<td>8.1</td>
<td>Overview of spatial IPMs</td>
<td>229</td>
<td></td>
</tr>
<tr>
<td>8.2</td>
<td>Building a dispersal kernel</td>
<td>231</td>
<td></td>
</tr>
<tr>
<td>8.2.1</td>
<td>Descriptive movement modeling</td>
<td>232</td>
<td></td>
</tr>
<tr>
<td>8.2.2</td>
<td>Mechanistic movement models</td>
<td>236</td>
<td></td>
</tr>
<tr>
<td>8.3</td>
<td>Theory: bounded spatial domain</td>
<td>237</td>
<td></td>
</tr>
<tr>
<td>8.4</td>
<td>Theory: unbounded spatial domain</td>
<td>239</td>
<td></td>
</tr>
<tr>
<td>8.5</td>
<td>Some applications of purely spatial IPMs</td>
<td>243</td>
<td></td>
</tr>
<tr>
<td>8.6</td>
<td>Combining space and demography: invasive species</td>
<td>244</td>
<td></td>
</tr>
<tr>
<td>8.7</td>
<td>Invasion speed in fluctuating environments</td>
<td>251</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Evolutionary Demography</td>
<td>255</td>
<td></td>
</tr>
<tr>
<td>9.1</td>
<td>Introduction</td>
<td>255</td>
<td></td>
</tr>
<tr>
<td>9.2</td>
<td>Motivation</td>
<td>257</td>
<td></td>
</tr>
<tr>
<td>9.3</td>
<td>Evolution: Dynamics</td>
<td>257</td>
<td></td>
</tr>
<tr>
<td>9.3.1</td>
<td>Approximating Evolutionary Dynamics</td>
<td>259</td>
<td></td>
</tr>
<tr>
<td>9.4</td>
<td>Evolution: Statics</td>
<td>260</td>
<td></td>
</tr>
<tr>
<td>9.4.1</td>
<td>Evolutionary Endpoints</td>
<td>261</td>
<td></td>
</tr>
<tr>
<td>9.4.2</td>
<td>Finding ESSs using an optimization principle</td>
<td>263</td>
<td></td>
</tr>
<tr>
<td>9.5</td>
<td>Evolution: Stochastic Environments</td>
<td>265</td>
<td></td>
</tr>
<tr>
<td>9.6</td>
<td>Function-valued traits</td>
<td>272</td>
<td></td>
</tr>
<tr>
<td>9.6.1</td>
<td>Solving the ESS conditions for function-valued strategies</td>
<td>277</td>
<td></td>
</tr>
<tr>
<td>9.7</td>
<td>Prospective evolutionary models</td>
<td>280</td>
<td></td>
</tr>
<tr>
<td>9.8</td>
<td>Appendix: Approximating evolutionary change</td>
<td>281</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Future Directions and Advanced Topics</td>
<td>283</td>
<td></td>
</tr>
<tr>
<td>10.1</td>
<td>More flexible kernels</td>
<td>283</td>
<td></td>
</tr>
<tr>
<td>10.1.1</td>
<td>Transforming variables</td>
<td>284</td>
<td></td>
</tr>
<tr>
<td>10.1.2</td>
<td>Nonconstant variance</td>
<td>284</td>
<td></td>
</tr>
<tr>
<td>10.1.3</td>
<td>Nonlinear growth: modeling the mean</td>
<td>286</td>
<td></td>
</tr>
<tr>
<td>10.1.4</td>
<td>Nonlinear growth: parametric variance models</td>
<td>287</td>
<td></td>
</tr>
<tr>
<td>10.1.5</td>
<td>Nonparametric models for growth variation</td>
<td>288</td>
<td></td>
</tr>
<tr>
<td>10.2</td>
<td>High-dimensional kernels</td>
<td>291</td>
<td></td>
</tr>
<tr>
<td>10.3</td>
<td>Demographic stochasticity</td>
<td>293</td>
<td></td>
</tr>
<tr>
<td>10.3.1</td>
<td>Population growth rate</td>
<td>297</td>
<td></td>
</tr>
<tr>
<td>10.3.2</td>
<td>Extinction</td>
<td>301</td>
<td></td>
</tr>
</tbody>
</table>
Data-driven Modelling of Structured Populations
A Practical Guide to the Integral Projection Model
Ellner, S.P.; Childs, D.Z.; Rees, M.
2016, XIII, 329 p. 67 illus., 29 illus. in color., Softcover
ISBN: 978-3-319-28891-8