Contents

1 Impulsive Dynamics and Measure Differential Equations 1
 1.1 Impulsive Forces .. 1
 1.2 Measure Differential Equations (MDEs) 7
 1.2.1 A First Class of MDEs 8
 1.2.2 A Second Class of MDEs: ODEs Driven
 by Measure Inputs .. 11
 1.2.3 Further Reading ... 15
 1.2.4 A Third Class of MDEs: ODEs with State Jump
 Mappings .. 16
 1.2.5 Further Reading ... 18
 1.3 Systems Subject to Unilateral Constraints 19
 1.3.1 General Considerations 19
 1.3.2 Flows with Collisions (Vibro-Impact Systems) 26
 1.3.3 Unilaterally Constrained Systems: A Geometric
 Approach .. 34
 1.3.4 Bilaterally Constrained Mechanical Systems
 and Impulsive Dynamics 38
 1.4 Changes of Coordinates in MDEs 39
 1.4.1 From Measure to Carathéodory Systems 39
 1.4.2 Decoupling of the Impulsive Effects (Commutativity
 Conditions) .. 42
 1.4.3 From Unilaterally Constrained Mechanical Systems
 to Filippov’s Differential Inclusions:
 the Zhuravlev–Ivanov Method 44

2 Viscoelastic Contact/Impact Rheological Models 51
 2.1 Simple Examples ... 52
 2.1.1 From Elastic to Hard Impact 52
 2.1.2 From Damped to Plastic Impact 55
 2.1.3 The General Case ... 56
2.2 Viscoelastic Contact Models and Restitution Coefficients 66
 2.2.1 Linear Spring-Dashpot .. 66
 2.2.2 Nonlinear Elasticity and Viscous Friction:
 Simon-Hunt-Crossley and Kuwabara-Kono
 Dissipations .. 68
 2.2.3 Conclusions .. 77

2.3 Viscoelastic Models with Dry Friction Elements:
 Viscoelasto-Plastic Models 78
 2.3.1 Conclusions and Further Reading 82

2.4 Penalizing Functions in Mathematical Analysis 83
 2.4.1 The Elastic Rebound Case 83
 2.4.2 The Case with Dissipation (Linear Viscous Friction) 84
 2.4.3 Uniqueness of Solutions 89
 2.4.4 Further Existence and Uniqueness Results 92

2.5 Some Comments on Compliant Models 93

3 Variational Principles .. 95
 3.1 Virtual Displacements, Velocities, and Accelerations
 Principles .. 95
 The “Classical” Presentation 95
 Using Variational and Quasi-Variational Inequalities
 Formalisms ... 98

 3.2 A Coordinate Invariance Principle 102
 Perfect Constraints .. 103

 3.3 Gauss’ Principle .. 104
 Further Reading ... 105

 3.4 Lagrange Dynamics .. 107
 External Impulsive Forces 107
 Example: Flexible Joint Manipulators 108

 3.5 Hamilton’s Principle and Unilateral Constraints 110
 Hamilton’s Principle Without Impacts 110
 Hamilton’s Principle With Impacts 111
 Modified Set of Curves 115
 Modified Lagrangian Function 119
 Additional Comments and Studies 122

4 Two Rigid Bodies Colliding .. 127
 4.1 Dynamical Equations of Two Rigid Bodies Colliding 127
 General Considerations 127
 The Local Kinematics .. 129
 The Gap Function .. 132
 The Two-Body System Dynamics 135
 Dynamical Equations and Energy Loss
 at Collision Times ... 137
 The Percussion Center 142
6.2 Kinematic Multiple-Impact Law (Generalized Newton)
- 6.2.1 The Quasi-Lagrange Equations
- 6.2.2 The Kinetic Energy
- 6.2.3 The Contact Forces Power
- 6.2.4 Restitution Law for Frictionless Systems
- 6.2.5 Restitution Law with Tangential Effects
- 6.2.6 Tangential Restitution
- 6.2.7 Comments

6.3 Energetic-CoR Multiple-Impact Law
- 6.3.1 Presentation of the LZB Impact Dynamics
- 6.3.2 Applications and Validations
- 6.3.3 Comparison of Different Multiple Impact Mappings

6.4 Further Reading
- 6.4.1 Kinetic Restitution (Poisson)
- 6.4.2 Kinematic Restitution (Newton and Moreau)
- 6.4.3 Other Approaches

7 Stability of Nonsmooth Dynamical Systems
- 7.1 Stability of Measure Differential Equations
- 7.1.1 Stability of Impulsive ODEs
- 7.1.2 Stability of Measure Driven ODEs (MDEs)
- 7.1.3 Additional Comments and Studies
- 7.2 Stability of the Discrete Dynamic Equations
- 7.2.1 The Bouncing-Ball with Fixed Obstacle
- 7.2.2 Lyapunov Stability of Discrete-Time Systems
- 7.3 Impact Oscillators
- 7.3.1 Existence of Periodic Trajectories
- 7.3.2 Further Reading
- 7.3.3 Comments on the Poincaré Impact Map Stability
- 7.3.4 Other Studies on Stability
- 7.3.5 Bouncing-Ball with Moving Base
- 7.3.6 Additional Comments and Studies
- 7.4 Grazing or C-Bifurcations
- 7.4.1 The Stroboscopic Poincaré Map Discontinuities
- 7.4.2 The Stroboscopic Poincaré Map Around Grazing-Motions
- 7.4.3 Further Comments and Studies
- 7.5 Complementarity Lagrangian Systems: Stability
 - 7.5.1 The Dynamical System
 - 7.5.2 The Stability Analysis
 - 7.5.3 Dissipativity Properties
 - 7.5.4 Further Reading and Comments
7.5.5 Global Finite-Time Stability via the Zhuravlev-Ivanov Transformation

7.6 Stabilization of Impacting Systems: From Compliant to Rigid Models

7.6.1 System’s Dynamics

7.6.2 Lyapunov Stability Analysis

7.6.3 Analysis of Quadratic Stability Conditions for Large Stiffness Values

7.6.4 A Stiffness-Independent Convergence Analysis

7.7 Stability of Linear Complementarity Systems

7.8 Further Reading

8 Trajectory Tracking Feedback Control

8.1 Trajectory Tracking: Rigid-Joint Rigid-Body Systems

8.1.1 Basic Concepts

8.1.2 Controller Design

8.1.3 Tracking Control Framework

8.1.4 Design of the Desired Contact Force During Constraint Phases

8.1.5 Strategy for Takeoff at the End of Constraint Phases Ω^L_k

8.1.6 Closed-Loop Stability Analysis

8.1.7 Illustrative Examples

8.1.8 Proof of Lemma 8.1

8.1.9 Proof of Theorem 8.1

8.2 Short Bibliography

8.3 Trajectory Tracking: Flexible-Joint Rigid-Link Systems

8.3.1 Basic Concepts

8.3.2 Tracking Control Framework

8.3.3 Desired Contact Force During Constraint Phases

8.3.4 Strategy for Takeoff at the End of Constraint Phases $\Omega^{H_k}_{2k+1}$

8.3.5 Closed-Loop Stability Analysis

8.3.6 Illustrative Example

8.3.7 Proof of Proposition 8.7

8.3.8 Proof of Lemma 8.2

8.3.9 Proof of Lemma 8.3

8.3.10 Proof of Theorem 8.2

8.4 A Unified Point of View

8.5 Further Results

8.5.1 Experimental Control of the Transition Phase

8.5.2 Juggling Robots Analysis and Control

8.5.3 Mechanisms with Joint Clearance

8.5.4 Observability and State Observers
Contents

Erratum to: Nonsmooth Mechanics ... E1
Appendix A: Distributions, Measures, Functions of Bounded
Variations .. 535
Appendix B: Elements of Convex Analysis 547
References .. 563
Index .. 619
Nonsmooth Mechanics
Models, Dynamics and Control
Brogliato, B.
2016, XXI, 628 p. 107 illus. in color., Hardcover
ISBN: 978-3-319-28662-4