Contents

1 Introduction ... 1
 1.1 A Long-Standing Challenge: Gaining Insight into Glass
 Fundamentals ... 1
 1.1.1 Glass Structure ... 2
 1.1.2 Glassy Dynamics. ... 4
 1.2 A New Method for Studying Dynamics: aXPCS 5
 1.2.1 Methods for Studying Diffusion 5
 1.2.2 The Development of aXPCS 7
 References ... 10

2 Theory ... 13
 2.1 Achieving Coherent Scattering 13
 2.1.1 Scattering Intensity and Speckle Patterns 13
 2.1.2 Optimal Scattering Thickness 16
 2.1.3 Coherence Properties 18
 2.2 Deducing Real-Space Time-Correlations from Intensity
 Pattern Series ... 22
 2.2.1 Van Hove Pair Correlation Function 23
 2.2.2 Autocorrelation Functions 23
 2.2.3 Link Between Autocorrelation Functions of Measured
 Intensities and Those of Real-Space Information 25
 2.3 Unravelling Atomic Dynamics 26
 2.3.1 Continuous Diffusion 27
 2.3.2 Jump Diffusion: Chudley–Elliott Model 28
 2.3.3 Extensions of the Chudley–Elliott Model 31
 2.4 Applying aXPCS to Diffusion in Glasses 32
 2.4.1 Influence of Different Scattering Species 32
 2.4.2 Kohlrausch Exponent 33
 2.4.3 Short-Range Order Correction 34
 References ... 35

xiii
3 Experimental

3.1 Preparing Glass Samples for Coherent Experiments

3.1.1 Glass Melting

3.1.2 Creating Thin But Stable Samples: Dimpling Grinder

3.2 Creating a Stable Sample Environment for Atomic-Resolution Measurements

3.2.1 Vacuum Sample Cell

3.2.2 Helium Cryostat

3.3 Obtaining Scattering Data for Atomic-Diffusion Studies

3.3.1 Generating Coherent X-Rays

3.3.2 Conducting Synchrotron Experiments

3.3.3 Gaining Complementary X-Ray Scattering Information

References

4 Data Analysis

4.1 Converting Scattered X-Rays to Intensity Data

4.1.1 Detecting Single Photons

4.1.2 Disposing of the Dark Current

4.2 Obtaining Correlation Times from Intensity Data

4.2.1 Histogram

4.2.2 Droplet Algorithm

4.2.3 Autocorrelation

4.2.4 Two-Time Correlation

4.3 Extracting Dynamics from Correlation Times

4.4 Evaluating in Real-Time During Experiments

References

5 Proof of Concept: Direct Observation of Atomic Diffusion in Glasses

5.1 Previous Studies of Lead Silicate Glasses

5.1.1 Structure

5.1.2 Dynamics

5.2 New Insight into Lead Silicate Glasses

5.2.1 Scattering Intensities

5.2.2 Glass Temperatures

5.2.3 Atomic Dynamics

References

6 Practical Application: Tailoring Fast Ionic Diffusion

6.1 Previous Studies on Amorphous Fast Ionic Conductors

6.1.1 Structure of Alkali Borate Glasses

6.1.2 Atomic Dynamics

6.2 Tailoring Atomic Diffusion in Glasses

6.2.1 Fluorescence: Caesium Borate Glasses

6.2.2 Influence of Thermal History: Rubidium Borate Glasses

References
Atomic Diffusion in Glasses Studied with Coherent X-Rays
Ross, M.
2016, XVIII, 111 p. 67 illus., 22 illus. in color., Hardcover
ISBN: 978-3-319-28644-0