Contents

1 Introduction ... 1

1.1 Typical Structure and Equivalent Circuits of Power Supply Systems. Features of Circuits with Variable Operating Regime Parameters ... 1

1.2 Disadvantages of the Well-Known Calculation Methods of Regime Parameters in the Relative Form for Active Two-Poles ... 3
 1.2.1 Volt–Ampere Characteristics of an Active Two-Pole .. 3
 1.2.2 Regime Parameters in the Relative Form ... 4
 1.2.3 Regime Change in the Relative Form .. 7
 1.2.4 Active Two-Port with Changeable Resistance .. 9
 1.2.5 Scales of Regime Parameters for Cascaded Two-Ports ... 9

1.3 Analysis of the Traditional Approach to Normalizing of Regime Parameters for the Voltage Linear Stabilization ... 11

1.4 Active Two-Port .. 14
 1.4.1 Volt Characteristics of an Active Two-Port ... 14
 1.4.2 Traditional Recalculation of the Load Currents ... 14

1.5 Nonlinear Characteristics ... 17
 1.5.1 Efficiency of Two-Ports with Different Losses .. 17
 1.5.2 Characteristic Regimes of Solar Cells ... 20
 1.5.3 Quasi-resonant Voltage Converter ... 20
 1.5.4 Power-Source and Power-Load Elements ... 21

1.6 Regulated Voltage Converters ... 21
 1.6.1 Voltage Regulator with a Limited Capacity Voltage Source 21
 1.6.2 Buck Converter ... 23
 1.6.3 Boost Converter ... 24

References ... 25
Part I Electrical Circuits with one Load. Projective Coordinates of a Straight Line Point

2 Operating Regimes of an Active Two-Pole. Display of Projective Geometry ... 29
 2.1 Volt–Ampere Characteristics of an Active Two-Pole. Affine and Projective Transformations of Regime Parameters 29
 2.1.1 Affine Transformations ... 29
 2.1.2 Projective Transformations ... 37
 2.2 Volt–Ampere Characteristics of an Active Two-Pole with a Variable Element .. 42
 2.2.1 Thévenin Equivalent Circuit with the Variable Internal Resistance .. 42
 2.2.2 Norton Equivalent Circuit with the Variable Internal Conductivity .. 44
 2.3 Regime Symmetry for a Load-Power ... 47
 2.3.1 Symmetry of Consumption and Return of Power 48
 2.3.2 Symmetry Relatively to the Maximum Power Point .. 50
 2.3.3 Two Systems of Characteristic Points 52
 References ... 54

3 Generalized Equivalent Circuit of an Active Two-Pole with a Variable Element ... 55
 3.1 Introduction .. 55
 3.2 Circuit with a Series Variable Resistance .. 56
 3.2.1 Disadvantage of the Known Equivalent Circuit 56
 3.2.2 Generalized Equivalent Circuit ... 57
 3.2.3 Relative Operative Regimes. Recalculation of the Load Current ... 60
 3.2.4 Example ... 65
 3.3 Circuit with a Shunt Variable Conductivity 70
 3.3.1 Disadvantage of the Known Equivalent Circuit 70
 3.3.2 Generalized Equivalent Circuit ... 71
 3.3.3 Relative Operative Regimes. Recalculation of the Load Current ... 74
 3.3.4 Example ... 78
 3.4 General Case of an Active Two-Pole with a Variable Conductivity ... 82
 3.4.1 Known Equivalent Generator ... 83
 3.4.2 Generalized Equivalent Circuit ... 84
 3.4.3 Example of a Circuit. Recalculation of the Load Current ... 87
 3.5 Stabilization of the Load Current ... 91
 References ... 94
4 Two-Port Circuits ... 97
 4.1 Input-Output Conformity of Two-Ports as Affine
 Transformations ... 97
 4.1.1 Conformity of a Two-Port .. 97
 4.1.2 Conformity of Cascaded Two-Ports 99
 4.2 Input-Output Conformity of Two-Ports as Projective
 Transformations ... 102
 4.2.1 Conformity of a Two-Port .. 102
 4.2.2 Versions of Conformities, Invariants, and Cross
 Ratios ... 106
 4.2.3 Conformity of Cascaded Two-Ports 109
 4.3 Use of Invariant Properties for the Transfer of Measuring
 Signals .. 116
 4.3.1 Transfer of Signals over an Unstable Two-Port 116
 4.3.2 Conductivity Measurement by an Unstable
 Two-Port ... 119
 4.4 Deviation from the Maximum Efficiency of a Two-Port 120
 4.4.1 Regime Symmetry for the Input Terminals 121
 4.4.2 Regime Symmetry for the Output or Load 123
 4.5 Effectiveness of Modular Connections 126
 4.5.1 Complementary Knowledge About a Two-Port 126
 4.5.2 Parallel Connection of Two Converters 127
 4.5.3 Connection of Two-Ports with the Interaction 130
 4.6 Effectiveness Indices of a Two-Port with Variable Losses ... 131
 4.6.1 Problems of Energy Indices .. 131
 4.6.2 Influence of Losses on the Load Power 131
 4.6.3 Influence of Losses on the Efficiency 135
References ... 138

5 Paralleling of Limited Capacity Voltage Sources 141
 5.1 Introduction ... 141
 5.2 Initial Relationships ... 141
 5.3 Influence of the Load Value on the Current Distribution 143
 5.3.1 Analysis of Paralleling Voltage Sources 143
 5.3.2 Introduction of Two Concepts 145
 5.3.3 Comparison of a Loading Regime of Different
 Circuits .. 148
 5.4 Influence of the Equalizing Resistance on the Current
 Distribution ... 153
 5.4.1 Analysis of Paralleling Voltage Sources 153
 5.4.2 Introduction of Two Concepts 154
 5.4.3 Comparison of a Loading Regime of Different
 Circuits .. 157
References ... 162
Part II Multi-port Circuits. Projective Coordinates of a Point on the Plane and Space

6 Operating Regimes of an Active Multi-port 167
 6.1 Active Two-Port. Affine and Projective Coordinates on the Plane .. 167
 6.1.1 Affine Coordinates .. 167
 6.1.2 Particular Case of a Two-Port. Introduction of the Projective Plane 173
 6.1.3 General Case of a Two-Port. Projective Coordinates ... 175
 6.2 Projective Coordinates in Space 183
 6.2.1 Particular Case of a Multi-port 183
 6.2.2 General Case of a Multi-port. The Balanced Networks ... 190
 6.3 Projective Coordinates of an Active Two-Port with Stabilization of Load Voltages 198
References .. 205

7 Recalculation of Load Currents of Active Multi-ports 207
 7.1 Recalculation of Currents for the Case of Load Changes 207
 7.1.1 Active Two-Port .. 207
 7.1.2 Active Three-Port ... 210
 7.2 Recalculation of Currents for the Case of Changes of Circuit Parameters 213
 7.2.1 Change of Lateral Conductivity 213
 7.2.2 Change of Longitudinal Conductivity 219
 7.3 Comparison of Regimes and Parameters of Active Two-Ports ... 224
 7.4 Comparison of Regime of Active Two-Ports with Linear Stabilizations of Load Voltages 228
References .. 235

8 Passive Multi-port Circuits .. 237
 8.1 Input-Output Conformity of Four-Ports as an Affine Transformation .. 237
 8.2 Input-Output Conformity of Four-Ports as a Projective Transformation .. 244
 8.2.1 Output of a Four-Port .. 244
 8.2.2 Input of a Four-Port .. 246
 8.2.3 Recalculation of Currents at Load Changes 251
 8.2.4 Two Cascaded Four-Port Networks 252
 8.2.5 Examples of Calculation 254
 8.3 Transmission of Two Signals Over Three-Wire Line 260
 8.3.1 Transmission by Using of Cross-Ratio 260
 8.3.2 Transmission by Using of Affine Ratio 262
9 Generalized Equivalent Circuit of a Multi-port

9.1 Generalized Equivalent of an Active Two-Port
 9.1.1 Disadvantages of Known Equivalent
 9.1.2 Introduction of the Formal Variant of a Generalized Equivalent
 9.1.3 Introduction of the Principal Variant of a Generalized Equivalent Circuit

9.2 Generalized Equivalent of an Active Three-Port

Part III Circuits with Non-Linear Regulation Curves

10 Regulation of Load Voltages

10.1 Base Model. Display of Conformal Geometry

10.2 Using of Hyperbolic Geometry Model
 10.2.1 Case of One Load
 10.2.2 Case of Two Loads

10.3 Example
 10.3.1 Case of One Load
 10.3.2 Case of Two Loads

11 Stabilization of Load Voltages

11.1 Analysis of Load Voltage Stabilization Regimes
 11.1.1 Case of One Load
 11.1.2 Use of Hyperbolic Geometry
 11.1.3 Case of Two Loads

11.2 Given Voltage for the First Variable Load and Voltage Regulation of the Second Given Load
 11.2.1 Use of Hyperbolic Geometry
 11.2.2 Regime Change for the First Given Load Resistance
 11.2.3 Example

12 Pulse-Width Modulation Regulators

12.1 Introduction

12.2 Regulation Characteristic of Boost Converter

12.3 Regulation Characteristic of Buck–Boost Converter
 12.3.1 Buck–Boost Converter with an Idealized Choke
 12.3.2 Buck–Boost Converter with Losses of Choke

References
Part IV Circuits with Non-Linear Load Characteristics

13 Power-Source and Power-Load Elements ... 361
 13.1 Introduction. ... 361
 13.2 Two-Valued Regime of a Regulated Converter.
 The Concept of a Power-Source and Power-Load Element 361
 13.3 Influence of Voltage Source Parameters and Power-Load
 Element onto a Power Supply Regime .. 363
 13.3.1 Ideal Voltage Source ... 363
 13.3.2 Voltage of a Power Supply with Limited Capacity 364
 13.3.3 Internal Resistance of a Voltage Source 370
 13.3.4 Power of a Power-Load Element 372
 13.4 Power-Load Element with Losses .. 374
 13.4.1 Series Loss Resistance .. 374
 13.4.2 Two-Port Loss Circuit .. 375
 13.5 Power Supply Line with Losses .. 381
 References ... 388

14 Quasi-resonant Voltage Converter with Self-limitation
 of Load Current. Similarity of Load Characteristics
 of Some Electronic Devices ... 389
 14.1 Load Curve of an Active Two-Pole with Self-limitation
 of the Current ..! 389
 14.2 Equivalent Generator of an Active Two-Pole
 with Self-limitation of Current .. 392
 14.3 Deviation from the Maximum Load Power Point 396
 14.4 Symmetrical Load Characteristic for the Full Area of the Load
 Voltage Variation ... 400
 14.5 Asymmetrical Load Characteristics ... 401
 14.6 Linearly Hyperbolic Approximation of a Solar Cell
 Characteristic .. 405
 14.6.1 Approximation Problem .. 405
 14.6.2 Formal Linearly Hyperbolic Approximation 405
 References ... 410

Conclusions ... 413

Index .. 415
Analysis of Electrical Circuits with Variable Load Regime Parameters
Projective Geometry Method
Penin, A.
2016, XXI, 417 p. 269 illus. in color., Hardcover
ISBN: 978-3-319-28450-7