Contents

1 Introduction ... 1
 1.1 Typical Structure and Equivalent Circuits of Power Supply Systems. Features of Circuits with Variable Operating Regime Parameters 1
 1.2 Disadvantages of the Well-Known Calculation Methods of Regime Parameters in the Relative Form for Active Two-Poles .. 3
 1.2.1 Volt–Ampere Characteristics of an Active Two-Pole 3
 1.2.2 Regime Parameters in the Relative Form .. 4
 1.2.3 Regime Change in the Relative Form ... 7
 1.2.4 Active Two-Port with Changeable Resistance .. 9
 1.2.5 Scales of Regime Parameters for Cascaded Two-Ports 9
 1.3 Analysis of the Traditional Approach to Normalizing of Regime Parameters for the Voltage Linear Stabilization 11
 1.4 Active Two-Port ... 14
 1.4.1 Volt Characteristics of an Active Two-Port .. 14
 1.4.2 Traditional Recalculation of the Load Currents 14
 1.5 Nonlinear Characteristics ... 17
 1.5.1 Efficiency of Two-Ports with Different Losses 17
 1.5.2 Characteristic Regimes of Solar Cells .. 20
 1.5.3 Quasi-resonant Voltage Converter .. 20
 1.5.4 Power-Source and Power-Load Elements .. 21
 1.6 Regulated Voltage Converters ... 21
 1.6.1 Voltage Regulator with a Limited Capacity Voltage Source 21
 1.6.2 Buck Converter .. 23
 1.6.3 Boost Converter ... 24
 References ... 25
Part I Electrical Circuits with one Load. Projective Coordinates of a Straight Line Point

2 Operating Regimes of an Active Two-Pole. Display of Projective Geometry... 29
 2.1 Volt-Ampere Characteristics of an Active Two-Pole. Affine and Projective Transformations of Regime Parameters 29
 2.1.1 Affine Transformations .. 29
 2.1.2 Projective Transformations 37
 2.2 Volt-Ampere Characteristics of an Active Two-Pole with a Variable Element ... 42
 2.2.1 Thévenin Equivalent Circuit with the Variable Internal Resistance ... 42
 2.2.2 Norton Equivalent Circuit with the Variable Internal Conductivity ... 44
 2.3 Regime Symmetry for a Load-Power 47
 2.3.1 Symmetry of Consumption and Return of Power 48
 2.3.2 Symmetry Relatively to the Maximum Power Point 50
 2.3.3 Two Systems of Characteristic Points 52

References .. 54

3 Generalized Equivalent Circuit of an Active Two-Pole with a Variable Element ... 55
 3.1 Introduction .. 55
 3.2 Circuit with a Series Variable Resistance 56
 3.2.1 Disadvantage of the Known Equivalent Circuit 56
 3.2.2 Generalized Equivalent Circuit 57
 3.2.3 Relative Operative Regimes. Recalculation of the Load Current ... 60
 3.2.4 Example .. 65
 3.3 Circuit with a Shunt Variable Conductivity 70
 3.3.1 Disadvantage of the Known Equivalent Circuit 70
 3.3.2 Generalized Equivalent Circuit 71
 3.3.3 Relative Operative Regimes. Recalculation of the Load Current ... 74
 3.3.4 Example .. 78
 3.4 General Case of an Active Two-Pole with a Variable Conductivity ... 82
 3.4.1 Known Equivalent Generator 83
 3.4.2 Generalized Equivalent Circuit 84
 3.4.3 Example of a Circuit. Recalculation of the Load Current ... 87
 3.5 Stabilization of the Load Current ... 91

References .. 94
4 Two-Port Circuits ... 97
 4.1 Input-Output Conformity of Two-Ports as Affine Transformations .. 97
 4.1.1 Conformity of a Two-Port .. 97
 4.1.2 Conformity of Cascaded Two-Ports 99
 4.2 Input-Output Conformity of Two-Ports as Projective Transformations 102
 4.2.1 Conformity of a Two-Port 102
 4.2.2 Versions of Conformities, Invariants, and Cross Ratios .. 106
 4.2.3 Conformity of Cascaded Two-Ports 109
 4.3 Use of Invariant Properties for the Transfer of Measuring Signals 116
 4.3.1 Transfer of Signals over an Unstable Two-Port 116
 4.3.2 Conductivity Measurement by an Unstable Two-Port ... 119
 4.4 Deviation from the Maximum Efficiency of a Two-Port .. 120
 4.4.1 Regime Symmetry for the Input Terminals 121
 4.4.2 Regime Symmetry for the Output or Load 123
 4.5 Effectiveness of Modular Connections 126
 4.5.1 Complementary Knowledge About a Two-Port 126
 4.5.2 Parallel Connection of Two Converters 127
 4.5.3 Connection of Two-Ports with the Interaction 130
 4.6 Effectiveness Indices of a Two-Port with Variable Losses .. 131
 4.6.1 Problems of Energy Indices 131
 4.6.2 Influence of Losses on the Load Power 131
 4.6.3 Influence of Losses on the Efficiency 135
References ... 138

5 Paralleling of Limited Capacity Voltage Sources .. 141
 5.1 Introduction ... 141
 5.2 Initial Relationships .. 141
 5.3 Influence of the Load Value on the Current Distribution .. 143
 5.3.1 Analysis of Paralleling Voltage Sources 143
 5.3.2 Introduction of Two Concepts 145
 5.3.3 Comparison of a Loading Regime of Different Circuits .. 148
 5.4 Influence of the Equalizing Resistance on the Current Distribution 153
 5.4.1 Analysis of Paralleling Voltage Sources 153
 5.4.2 Introduction of Two Concepts 154
 5.4.3 Comparison of a Loading Regime of Different Circuits .. 157
References ... 162
Part II Multi-port Circuits. Projective Coordinates of a Point on the Plane and Space

6 Operating Regimes of an Active Multi-port 167
6.1 Active Two-Port. Affine and Projective Coordinates on the Plane ... 167

6.1.1 Affine Coordinates ... 167
6.1.2 Particular Case of a Two-Port. Introduction of the Projective Plane 173
6.1.3 General Case of a Two-Port. Projective Coordinates ... 175

6.2 Projective Coordinates in Space 183
6.2.1 Particular Case of a Multi-port 183
6.2.2 General Case of a Multi-port. The Balanced Networks ... 190

6.3 Projective Coordinates of an Active Two-Port with Stabilization of Load Voltages 198

References ... 205

7 Recalculation of Load Currents of Active Multi-ports 207
7.1 Recalculation of Currents for the Case of Load Changes 207

7.1.1 Active Two-Port ... 207
7.1.2 Active Three-Port ... 210

7.2 Recalculation of Currents for the Case of Changes of Circuit Parameters 213

7.2.1 Change of Lateral Conductivity 213
7.2.2 Change of Longitudinal Conductivity 219

7.3 Comparison of Regimes and Parameters of Active Two-Ports ... 224

7.4 Comparison of Regime of Active Two-Ports with Linear Stabilizations of Load Voltages 228

References ... 235

8 Passive Multi-port Circuits .. 237

8.1 Input-Output Conformity of Four-Ports as an Affine Transformation 237

8.2 Input-Output Conformity of Four-Ports as a Projective Transformation 244

8.2.1 Output of a Four-Port ... 244
8.2.2 Input of a Four-Port ... 246
8.2.3 Recalculation of Currents at Load Changes 251
8.2.4 Two Cascaded Four-Port Networks 252

8.2.5 Examples of Calculation ... 254

8.3 Transmission of Two Signals Over Three-Wire Line 260

8.3.1 Transmission by Using of Cross-Ratio 260
8.3.2 Transmission by Using of Affine Ratio 262
Part III Circuits with Non-Linear Regulation Curves

10 Regulation of Load Voltages

- **10.1 Base Model. Display of Conformal Geometry**
- **10.2 Using of Hyperbolic Geometry Model**
 - **10.2.1 Case of One Load**
 - **10.2.2 Case of Two Loads**
- **10.3 Example**
 - **10.3.1 Case of One Load**
 - **10.3.2 Case of Two Loads**

11 Stabilization of Load Voltages

- **11.1 Analysis of Load Voltage Stabilization Regimes**
 - **11.1.1 Case of One Load**
 - **11.1.2 Use of Hyperbolic Geometry**
 - **11.1.3 Case of Two Loads**
- **11.2 Given Voltage for the First Variable Load and Voltage Regulation of the Second Given Load**
 - **11.2.2 Regime Change for the First Given Load Resistance**
 - **11.2.3 Example**

12 Pulse-Width Modulation Regulators

- **12.1 Introduction**
- **12.2 Regulation Characteristic of Boost Converter**
- **12.3 Regulation Characteristic of Buck–Boost Converter**
 - **12.3.1 Buck–Boost Converter with an Idealized Choke**
 - **12.3.2 Buck–Boost Converter with Losses of Choke**

References
Part IV Circuits with Non-Linear Load Characteristics

13 Power-Source and Power-Load Elements

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>13.1 Introduction</td>
<td>361</td>
</tr>
<tr>
<td>13.2 Two-Valued Regime of a Regulated Converter.</td>
<td>361</td>
</tr>
<tr>
<td>The Concept of a Power-Source and Power-Load Element</td>
<td>361</td>
</tr>
<tr>
<td>13.3 Influence of Voltage Source Parameters and Power-Load Element</td>
<td>363</td>
</tr>
<tr>
<td>onto a Power Supply Regime</td>
<td></td>
</tr>
<tr>
<td>13.3.1 Ideal Voltage Source</td>
<td>363</td>
</tr>
<tr>
<td>13.3.2 Voltage of a Power Supply with Limited Capacity</td>
<td>364</td>
</tr>
<tr>
<td>13.3.3 Internal Resistance of a Voltage Source</td>
<td>370</td>
</tr>
<tr>
<td>13.3.4 Power of a Power-Load Element</td>
<td>372</td>
</tr>
<tr>
<td>13.4 Power-Load Element with Losses</td>
<td>374</td>
</tr>
<tr>
<td>13.4.1 Series Loss Resistance</td>
<td>374</td>
</tr>
<tr>
<td>13.4.2 Two-Port Loss Circuit</td>
<td>375</td>
</tr>
<tr>
<td>13.5 Power Supply Line with Losses</td>
<td>381</td>
</tr>
<tr>
<td>References</td>
<td>388</td>
</tr>
</tbody>
</table>

14 Quasi-resonant Voltage Converter with Self-limitation of Load Current. Similarity of Load Characteristics of Some Electronic Devices

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>14.1 Load Curve of an Active Two-Pole with Self-limitation of the Current</td>
<td>389</td>
</tr>
<tr>
<td>14.2 Equivalent Generator of an Active Two-Pole with Self-limitation of Current</td>
<td>392</td>
</tr>
<tr>
<td>14.3 Deviation from the Maximum Load Power Point</td>
<td>396</td>
</tr>
<tr>
<td>14.4 Symmetrical Load Characteristic for the Full Area of the Load Voltage Variation</td>
<td>400</td>
</tr>
<tr>
<td>14.5 Asymmetrical Load Characteristics</td>
<td>401</td>
</tr>
<tr>
<td>14.6 Linearly Hyperbolic Approximation of a Solar Cell</td>
<td>405</td>
</tr>
<tr>
<td>14.6.1 Approximation Problem</td>
<td>405</td>
</tr>
<tr>
<td>14.6.2 Formal Linearly Hyperbolic Approximation</td>
<td>405</td>
</tr>
<tr>
<td>References</td>
<td>410</td>
</tr>
</tbody>
</table>

Conclusions

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>413</td>
</tr>
</tbody>
</table>

Index

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>415</td>
</tr>
</tbody>
</table>