Contents

Preface .. vii

A Note to the Reader .. xiii

1 The Set of Real Numbers .. 1
 1.1 Sets and Mappings .. 1
 1.2 The Set R ... 4
 1.3 The Subset N and the Principle of Induction 9
 1.4 The Completeness Property 16
 1.5 Sequences and Limits 20
 1.6 Nonnegative Series and Decimal Expansions 31
 1.7 Signed Series and Cauchy Sequences 36

2 Continuity .. 49
 2.1 Compactness ... 49
 2.2 Continuous Limits 53
 2.3 Continuous Functions 57

3 Differentiation ... 73
 3.1 Derivatives .. 73
 3.2 Mapping Properties 81
 3.3 Graphing Techniques 88
 3.4 Power Series .. 100
 3.5 Taylor Series .. 106
 3.6 Trigonometry .. 114
 3.7 Primitives ... 122

4 Integration .. 131
 4.1 The Cantor Set .. 131
 4.2 Area .. 136
<table>
<thead>
<tr>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.3 The Integral</td>
</tr>
<tr>
<td>4.4 The Fundamental Theorems of Calculus</td>
</tr>
<tr>
<td>4.5 The Method of Exhaustion</td>
</tr>
<tr>
<td>5 Applications</td>
</tr>
<tr>
<td>5.1 Euler’s Gamma Function</td>
</tr>
<tr>
<td>5.2 The Number π</td>
</tr>
<tr>
<td>5.3 Gauss’ Arithmetic–Geometric Mean</td>
</tr>
<tr>
<td>5.4 The Gaussian Integral</td>
</tr>
<tr>
<td>5.5 Stirling’s Approximation</td>
</tr>
<tr>
<td>5.6 Infinite Products</td>
</tr>
<tr>
<td>5.7 Jacobi’s Theta Functions</td>
</tr>
<tr>
<td>5.8 Riemann’s Zeta Function</td>
</tr>
<tr>
<td>5.9 The Euler–Maclaurin Formula</td>
</tr>
<tr>
<td>6 Generalizations</td>
</tr>
<tr>
<td>6.1 Measurable Functions and Linearity</td>
</tr>
<tr>
<td>6.2 Limit Theorems</td>
</tr>
<tr>
<td>6.3 The Fundamental Theorems of Calculus</td>
</tr>
<tr>
<td>6.4 The Sunrise Lemma</td>
</tr>
<tr>
<td>6.5 Absolute Continuity</td>
</tr>
<tr>
<td>6.6 The Lebesgue Differentiation Theorem</td>
</tr>
<tr>
<td>A Solutions</td>
</tr>
<tr>
<td>A.1 Solutions to Chapter 1</td>
</tr>
<tr>
<td>A.2 Solutions to Chapter 2</td>
</tr>
<tr>
<td>A.3 Solutions to Chapter 3</td>
</tr>
<tr>
<td>A.4 Solutions to Chapter 4</td>
</tr>
<tr>
<td>A.5 Solutions to Chapter 5</td>
</tr>
<tr>
<td>A.6 Solutions to Chapter 6</td>
</tr>
</tbody>
</table>

References | 419 |

Index | 421 |
Introduction to Calculus and Classical Analysis
Hijab, O.
2016, XIII, 427 p. 69 illus., 68 illus. in color., Hardcover
ISBN: 978-3-319-28399-9