Contents

1 Key Features and Operating Conditions of Tribocoupling 1
 1.1 Friction, Wear, and Lubrication. Concepts Development 1
 1.2 Performance Analysis of Oil Field Equipment in Terms of Mechanical–Chemical Defectiveness 8
 1.2.1 Assessment of the Level of Corrosive Mechanical Fracture in Equipment ... 9
 1.2.2 Mathematical Modeling of Mechanical–Chemical Defectiveness and Calculations on Durability 12
 1.3 Performance Analysis of Oil Field Equipment in Terms of Non-stationary Loading .. 13
 Literatures .. 21

2 Scientific Foundations of Stochastic Tribomodeling 23
 2.1 Probability Analysis of Generalized Variables Based on Stochastic Nature of Parameters 24
 2.2 Varying Generalized Variable When Planning Experiments 47
 2.3 Application of Group Method of Data Handling with Respect to Tribotechnical Problems 49
 2.3.1 Development of Mathematical Model with Initial Variables .. 51
 2.3.2 Development of Mathematical Model with Generalized Variables .. 54
 Literatures .. 57

3 Synergetic Model of Fracture and Mechanics of Fatigue Cracks During Friction ... 59
 3.1 Synergetic Analysis of Plastic Deformation and Fracture Using Bifurcation Doubling Model 60
 3.2 Application of Generalized Golden Ratios to Control Self-similarity and Stability Properties of Fractal Structure Distribution in Fatigue Cracks of Solids 78
3.3 Bifurcation Doubling Model (Feigenbaum Scheme) for Fatigue Crack Growth ... 89
3.3.1 Universality of the Feigenbaum Theory to Describe the Behavior of Nonlinear Systems 90
3.3.2 Bifurcation Doubling Process Forecasting 106
3.3.3 Analysis of the Noise Impact on the Feigenbaum Behavior ... 117
3.4 Synergetics of the Restructuring of Crystal Structures with Condensed State Under the Influence of External Forces .. 121
Literatures ... 136

4 Fractal Kinetics of Fracture ... 141
4.1 The Concept of Fractal—Fractal Dimension 141
4.2 Fractals in Condensed Matter Physics 143
4.3 Fractal Properties of Hierarchical Structures of Potential Relief ... 147
4.4 Kinetics of Fracture from Positions of the Theory of Fractals . 153
4.5 Relationship Analysis of the Fractal Dimension of Pre-fracture Dissipative Structures with Mechanical Properties and Critical States of Deformation of Metals and Alloys .. 164
Literatures ... 175

5 Multifractal Analysis of Fatigue Failure .. 179
5.1 Key Concepts of Multifractal Analysis—Generalized Fractal Dimensions ... 179
5.2 Multifractal Nature of Micro-Cracks Merger 186
5.3 Multifractal Singularity Spectrum of Time Series 199
5.3.1 Standard Multifractal Formalism and Singularity Spectrum .. 201
5.3.2 Wavelet Transform Modulus Maxima Method 205
5.3.3 Multifractal Fluctuation Analysis 210
5.3.4 Simple Multifractal Time Series Models 216
Literatures ... 219

6 Fractal Analysis of Fatigue Failure of Kinematic Pair
(Oil–Gas Xmas Tree Valve) ... 223
6.1 Design Features and Operating Conditions of Flow Control Devices .. 224
6.2 Contact Interaction Between the Bolt and Nut.
N.E. Zhukovsky Problem ... 229
6.3 Load Distribution on Screw of Kinematic Pair 231
6.4 Study of Wear of the Valve Kinematic Pair
in the Elastic–Plastic Deformation Zone 238
6.5 Assessment of Tribological Characteristics of Kinematic Pair

6.6 Mechanics of Frictional Conical Surfaces of Xmas Tree Valves

6.7 Fractal Dimension and Analysis of Fatigue Non-spreading Cracks of the Kinematic Pair of Valve

6.8 Improving Durability of the Kinematic Pair of Valve

6.9 Test Stand of the Kinematic Pair of Valve

6.10 Choosing a Lubricant for the Direct Flow Valve of Xmas Tree

Literatures

7 Fractal Fatigue Analysis of Valve Units of Sucker Rod Pumps

7.1 Design and Analysis of Operating Conditions of Valve Units

7.2 Analytical Dependencies for Assessing the Tightness of Valve Units

7.3 Wear and Its Determination in Valve Units

7.4 Fluid Leakage and Its Determination in Valve Units

7.5 Recommendation for Improving the Wear Resistance of Valve Units

7.6 Fractal Dimension Analysis of Cumulative Crack Area of Valve Fracture

7.6.1 Measurement and Fractal Structure Analysis of the Rough Surfaces

7.6.2 Durability Modeling of Submersible Pumps Depending on Fractal Dimension of Surface Breakage and Cumulative Crack Area of Valve Fracture

7.7 Kinetics of Damage at Contact Fatigue of Parts of Submersible Pump

7.8 Contact Interaction Diagnosis of Solids at Friction Using Fractal Analysis

7.8.1 Emergence of Fractal Structures Through the Evolution of Complex Systems

7.8.2 Dependence of Contour Pressure on Roughness at Elastic and Plastic Contacts

7.8.3 Calculation of Fractal Dimension on Supporting Surface Curve at Threshold Values of Injection

7.8.4 Calculation of Power Spectrum of Roughness Profile and Contact Regime Diagnosis of Metal Bodies

Literatures
8 Flicker Noise Spectroscopy (FNS) of Dynamics Signals and Its Application in Wear of Oil-Field Compressor Units (OFCU)

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.1 Analysis of Technical Manufacturing Characteristics of Operating Oil-Field Compressor Units</td>
<td>333</td>
</tr>
<tr>
<td>8.2 Flicker Noise Spectroscopy—A New Approach to Solving the Problem of Extracting Information from Complex Dynamic Signals</td>
<td>335</td>
</tr>
<tr>
<td>8.3 Essence of Flicker Noise Spectroscopy</td>
<td>340</td>
</tr>
<tr>
<td>8.4 Flicker Noise and Self-similar Criticality</td>
<td>342</td>
</tr>
<tr>
<td>8.5 Conceptual Foundations of Flicker Noise Spectroscopy</td>
<td>346</td>
</tr>
<tr>
<td>8.6 Assessment of Irregularities-Bursts and Catastrophic Changes in the State of Oil-Field Compressor Units</td>
<td>350</td>
</tr>
<tr>
<td>8.6.1 Formulation of the Problem and Solution Method</td>
<td>350</td>
</tr>
<tr>
<td>8.6.2 Parameterization of Singular Component of Signal Power Spectrum</td>
<td>351</td>
</tr>
<tr>
<td>8.6.3 Precursor Calculation of System Catastrophic States</td>
<td>359</td>
</tr>
<tr>
<td>8.7 Parameterization of Signal Regular Component</td>
<td>361</td>
</tr>
<tr>
<td>8.8 Joining Asymptotic Representations of the Structure Function $\tilde{\Phi}_R^{(2)}(\tau)$</td>
<td>371</td>
</tr>
<tr>
<td>Literatures</td>
<td>379</td>
</tr>
</tbody>
</table>
Synergetics and Fractals in Tribology
Janahmadov, A.K.; Javadov, M.
2016, XII, 381 p. 98 illus., Hardcover
ISBN: 978-3-319-28187-2