Preface

Swarm-based algorithms have become one of the foremost researched and applied heuristics in the field of evolutionary computation within the past decade. One of the new and novel approaches is that of the self-organizing migrating algorithm (SOMA). Initially developed and published in 2001 by Prof. Ivan Zelinka, SOMA has been actively researched by a select group of researchers over the past decade and a half.

SOMA is conceptualized on a predator/prey relationship, where the sampling of the search space is conducted on a multidimensional facet, with the dimension selection conducted pre-sampling, using a randomly generated PRT vector. Two unique aspects of SOMA, which differentiate it from other swarm-based algorithms, are the creation and application of the PRT vector, and the path length, which specifies the distance and sampling required within a particular dimension.

Over the past few years, SOMA has been modified to solve combinatorial optimization problems. This discrete variant so-called discrete self-organizing migrating algorithm (DSOMA) has been proven to be robust and efficient.

With its ever-expanding applications and utilization, it was thought beneficial and timely to produce a collated work of all the active applications of SOMA, which shows its current state of the art. To this effect, we have reached out and have obtained original research topics in SOMA and its application from a very diverse group of academics and researchers. This provides a rich source of material and ideas for both students and researchers.

Chapter authors’ background: Chapter authors are to the best of our knowledge the originators or closely related to the originators of the different variants and applications of SOMA.
Organization of the Chapters

The book is divided into two parts. The first part methodology is divided into two chapters. The first chapter “SOMA—Self-organising Migrating Algorithm” written by the originator of SOMA, Ivan Zelinka, introduces SOMA to the broad audience. The second chapter “DSOMA—Discrete Self-Organising Migrating Algorithm” by Davendra, Zelinka, Pluhacek, and Senkerik describes the discrete variant of SOMA.

The second part of the book describes the different implementations of SOMA. The chapters in this section are given in the following order. Chapter “SOMA and Strange Dynamics” by Zelinka introduces the concepts of chaos and complex networks in SOMA.

Chapter “Multi-objective Self-organizing Migrating Algorithm” by Kadlec and Raida introduces multi-objective SOMA (MOSOMA), whereas chapter “Multi-objective Design of EM Components” describes its application to EM component design.

Chapter by Běhálek, Gajdůs, and Davendra shows the “Utilization of Parallel Computing for Discrete Self-organizing Migration Algorithm” using OpenMP and CUDA.

Chapter “C-SOMAQI: Self-organizing Migrating Algorithm with Quadratic Interpolation Crossover Operator for Constrained Global Optimization” by Singh, Agarway, and Deep introduces another variant of SOMA, C-SOMAQI, to solve constrained optimization problems. Another hybrid variant C-SOMGA also used to solve constrained optimization problems is given in chapter “Optimization of Directional Overcurrent Relay Times Using C-SOMGA” by Deep and Singh. SOMAGA is further expanded in chapter “SOMAGA for Large Scale Function Optimization and its Application” to solve large-scale and real-life problems.

Chapter “Solving the Routing Problems with Time Windows” by Čičková, Brezina, and Pekár describes the application of SOMA to the vehicle routing problem. The same authors apply SOMA to financial modeling in chapter “SOMA in Financial Modeling.”

The final two chapters deal with SOMA parameters and influences. Chapter “Setting of Control Parameters of SOMA on the Base of Statistics” by Čičková and Lukáčik looks at different statistical bases for SOMA parameter settings. The final chapter “Inspired in SOMA: Perturbation Vector Embedded into the Chaotic PSO Algorithm Driven by Lozi Chaotic Map” by Pluhacek, Zelinka, Senkerik, and Davendra looks at the influences of the PRT vector in the PSO algorithm.

Audience: The book will be an instructional material for senior undergraduate and entry-point graduate students in computer science, applied mathematics, statistics, management and decision sciences, and engineering, who are working in
the area of modern optimization. The book will also serve as a resource handbook and material for practitioners who want to apply SOMA to solve real-life problems and challenging applications.

USA and Czech Republic
Donald Davendra
Ivan Zelinka
October 2015
Self-Organizing Migrating Algorithm
Methodology and Implementation
Davendra, D.; Zelinka, I. (Eds.)
2016, XVIII, 289 p. 128 illus., 87 illus. in color.,
Hardcover
ISBN: 978-3-319-28159-9