Contents

Part I Introduction to Fixed Points

1 From Newton to Google .. 3
 1.1 What Is a Fixed Point? ... 3
 1.2 Example: Newton’s Method ... 4
 1.3 Example: Initial-Value Problems 4
 1.4 Example: The Internet .. 5
 1.5 Example: The Schröder–Bernstein Theorem 8
 1.6 The Brouwer Fixed-Point Theorem 10
 1.7 Application: Stochastic Matrices 10
 1.8 Perron’s Theorem ... 13
 1.9 The Google Matrix ... 15
 Notes .. 16

2 Brouwer in Dimension Two .. 19
 2.1 Sperner’s Lemma ... 19
 2.2 Proof of Brouwer’s Theorem for a Triangle 21
 2.3 Finding Fixed Points by “Walking Through Rooms” 24
 Notes .. 25

3 Contraction Mappings ... 27
 3.1 Contraction Mappings ... 27
 3.2 Application: Stochastic Matrices/Google 30
 3.3 Application: Newton’s Method 31
 3.4 Application: Initial-Value Problems 33
 Notes .. 36
Part II From Brouwer to Nash

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Brouwer in Higher Dimensions</td>
<td>41</td>
</tr>
<tr>
<td></td>
<td>4.1 Fixed Points and Retractions</td>
<td>41</td>
</tr>
<tr>
<td></td>
<td>4.2 “No-Retraction” ⇒ “Brouwer”</td>
<td>42</td>
</tr>
<tr>
<td></td>
<td>4.3 Proof of the Brouwer Fixed-Point Theorem</td>
<td>44</td>
</tr>
<tr>
<td></td>
<td>4.4 Retraction and Convexity</td>
<td>47</td>
</tr>
<tr>
<td></td>
<td>Notes</td>
<td>50</td>
</tr>
<tr>
<td>5</td>
<td>Nash Equilibrium</td>
<td>51</td>
</tr>
<tr>
<td></td>
<td>5.1 Mathematicians Go to Dinner</td>
<td>51</td>
</tr>
<tr>
<td></td>
<td>5.2 Four Examples</td>
<td>52</td>
</tr>
<tr>
<td></td>
<td>5.3 Nash Equilibrium</td>
<td>53</td>
</tr>
<tr>
<td></td>
<td>5.4 Mixed Strategies</td>
<td>56</td>
</tr>
<tr>
<td></td>
<td>5.5 The Mixed-Strategy Extension of Rock–Paper–Scissors</td>
<td>57</td>
</tr>
<tr>
<td></td>
<td>5.6 The Principle of Indifference</td>
<td>59</td>
</tr>
<tr>
<td></td>
<td>5.7 Nash’s Theorem</td>
<td>61</td>
</tr>
<tr>
<td></td>
<td>5.8 The Minimax Theorem</td>
<td>62</td>
</tr>
<tr>
<td></td>
<td>Notes</td>
<td>64</td>
</tr>
<tr>
<td>6</td>
<td>Nash’s “One-Page Proof”</td>
<td>65</td>
</tr>
<tr>
<td></td>
<td>6.1 Multifunctions</td>
<td>65</td>
</tr>
<tr>
<td></td>
<td>6.2 Best Response</td>
<td>67</td>
</tr>
<tr>
<td></td>
<td>6.3 The Kakutani Fixed-Point Theorem</td>
<td>68</td>
</tr>
<tr>
<td></td>
<td>6.4 Application to Nash Equilibrium</td>
<td>70</td>
</tr>
<tr>
<td></td>
<td>Notes</td>
<td>71</td>
</tr>
</tbody>
</table>

Part III Beyond Brouwer: Dimension = ∞

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>The Schauder Fixed-Point Theorem</td>
<td>75</td>
</tr>
<tr>
<td></td>
<td>7.1 The Theorem</td>
<td>75</td>
</tr>
<tr>
<td></td>
<td>7.2 The Proof</td>
<td>77</td>
</tr>
<tr>
<td></td>
<td>7.3 Generalization to Non-compact Situations</td>
<td>78</td>
</tr>
<tr>
<td></td>
<td>7.4 Application: Initial Value Problems</td>
<td>79</td>
</tr>
<tr>
<td></td>
<td>7.5 Application: Multifunctions Again</td>
<td>81</td>
</tr>
<tr>
<td></td>
<td>Notes</td>
<td>81</td>
</tr>
<tr>
<td>8</td>
<td>The Invariant Subspace Problem</td>
<td>83</td>
</tr>
<tr>
<td></td>
<td>8.1 Invariant Subspaces</td>
<td>84</td>
</tr>
<tr>
<td></td>
<td>8.2 Invariant Subspaces in \mathbb{C}^N</td>
<td>86</td>
</tr>
<tr>
<td></td>
<td>8.3 Compact Operators</td>
<td>90</td>
</tr>
<tr>
<td></td>
<td>8.4 Lomonosov’s Theorem</td>
<td>92</td>
</tr>
<tr>
<td></td>
<td>8.5 What Lomonosov Really Proved</td>
<td>95</td>
</tr>
<tr>
<td></td>
<td>Notes</td>
<td>95</td>
</tr>
</tbody>
</table>
Part IV Fixed Points for Families of Maps

9 The Markov–Kakutani Theorem ... 101
 9.1 Topological groups and Haar measure 101
 9.2 Haar Measure as a Fixed Point 103
 9.3 The Markov–Kakutani Fixed-Point Theorem 105
 9.4 Proof of the Markov–Kakutani Theorem 107
 9.5 Markov–Kakutani Operating Manual 109
 9.6 Invariant Measures for Commuting Families of Maps 115
 9.7 Harmonic Analysis on Compact Abelian Groups 116
Notes .. 119

10 The Meaning of Means .. 121
 10.1 Means and Finitely Additive Measures 121
 10.2 Extending Haar Measure 123
 10.3 Amenable Groups .. 127
Notes .. 129

11 Paradoxical Decompositions ... 131
 11.1 Paradoxical Sets .. 131
 11.2 The Hausdorff Paradox ... 134
 11.3 Equidecomposability ... 137
 11.4 The Banach–Tarski Paradox for S^2 and \mathbb{B}^3 139
 11.5 Banach–Tarski beyond \mathbb{B}^3 141
Notes .. 143

12 Fixed Points for Non-commuting Map Families 145
 12.1 The “Solvable” Markov–Kakutani Theorem 145
 12.2 Solvable Families of Maps 146
 12.3 Proof of the solvable Markov–Kakutani Theorem 149
 12.4 Applying the solvable M–K Theorem 149
 12.5 The (solvable) Invariant Hahn–Banach Theorem 151
 12.6 Right vs. Left ... 153
 12.7 The Locally Compact Case 157
Notes .. 162

13 Beyond Markov–Kakutani ... 163
 13.1 Introduction to the Ryll–Nardzewski Theorem 163
 13.2 Extreme points of convex sets 166
 13.3 Ryll–Nardzewski: separable predual version 169
 13.4 Application to Haar Measure 171
 13.5 Haar Measure on $\text{SO}(3)$ 173
 13.6 Computation of some Haar integrals over $\text{SO}(3)$ 177
 13.7 Kakutani’s Equicontinuity Theorem 178
Notes .. 179
Appendices

A Advanced Calculus .. 183
 A.1 Differentiation in \(\mathbb{R}^N \) .. 183
 A.2 Approximation by Smooth Functions 185
 A.3 Change-of-Variables in Integrals 186
 Notes .. 187

B Compact Metric Spaces ... 189
 B.1 \(\varepsilon \)-Nets and Total Boundedness 189
 B.2 Continuous Functions on Compact Spaces 190
 Notes .. 192

C Convex Sets and Normed Spaces .. 193
 C.1 Convex Sets ... 193
 C.2 Normed Linear Spaces ... 194
 C.3 Finite Dimensional Normed Linear Spaces 197
 Notes .. 198

D Euclidean Isometries .. 199
 D.1 Isometries and Orthogonal Matrices 199
 D.2 Rotations of \(\mathbb{R}^2 \) and \(\mathbb{R}^3 \) 202
 Notes .. 205

E A Little Group Theory, a Little Set Theory 207
 E.1 Normal Subgroups .. 207
 E.2 Solvable Groups ... 208
 E.3 The Axiom of Choice and Zorn’s Lemma 209
 Notes .. 209

References .. 211

Index .. 217

List of symbols ... 221