Contents

1 Introduction and Summary ... 1

2 Equations of Classical Hydrodynamics 11
 2.1 Derivation of the Equations of Motion 11
 2.2 The Stress Tensor ... 20
 2.3 Field Equations ... 22
 2.4 Navier–Stokes Equations 23
 2.5 Vorticity Dynamics ... 24
 2.6 Thermodynamics ... 26
 2.7 Similarity of Flows and Nondimensional Variables 28
 2.8 Examples of Simple Exact Solutions 31
 2.9 Comments and Bibliographical Notes 36

3 Mathematical Preliminaries .. 39
 3.1 Theorems from Functional Analysis 39
 3.2 Sobolev Spaces and Distributions 44
 3.3 Some Embedding Theorems and Inequalities 48
 3.4 Sobolev Spaces of Periodic Functions 54
 3.5 Evolution Spaces and Their Useful Properties 61
 3.6 Gronwall Type Inequalities 67
 3.7 Clarke Subdifferential and Its Properties 70
 3.8 Nemytskii Operator for Multifunctions 74
 3.9 Clarke Subdifferential: Examples 77
 3.10 Comments and Bibliographical Notes 81

4 Stationary Solutions of the Navier–Stokes Equations 83
 4.1 Basic Stationary Problem 83
 4.1.1 The Stokes Operator 84
 4.1.2 The Nonlinear Problem 86
 4.1.3 Other Topological Methods to Deal with the Nonlinearity 90
 4.2 Comments and Bibliographical Notes 93
5 Stationary Solutions of the Navier–Stokes Equations with Friction
5.1 Problem Formulation 95
5.2 Friction Operator and Its Properties 96
5.3 Weak Formulation 98
5.4 Existence of Weak Solutions for the Case of Linear Growth Condition ... 103
5.5 Existence of Weak Solutions for the Case of Power Growth Condition ... 107
5.6 Comments and Bibliographical Notes............................... 109

6 Stationary Flows in Narrow Films and the Reynolds Equation
6.1 Classical Formulation of the Problem............................... 111
6.2 Weak Formulation and Main Estimates 114
6.3 Scaling and Uniform Estimates 121
6.4 Limit Variational Inequality, Strong Convergence, and the Limit Equation ... 125
6.5 Remarks on Function Spaces .. 128
6.6 Strong Convergence of Velocities and the Limit Equation 134
6.7 Reynolds Equation and the Limit Boundary Conditions 137
6.8 Uniqueness ... 141
6.9 Comments and Bibliographical Notes............................... 142

7 Autonomous Two-Dimensional Navier–Stokes Equations
7.1 Navier–Stokes Equations with Periodic Boundary Conditions ... 143
7.2 Existence of the Global Attractor: Case of Periodic Boundary Conditions... 151
7.3 Convergence to the Stationary Solution: The Simplest Case 157
7.4 Convergence to the Stationary Solution for Large Forces 159
7.5 Average Transfer of Energy .. 163
7.6 Comments and Bibliographical Notes............................... 166

8 Invariant Measures and Statistical Solutions
8.1 Existence of Invariant Measures 169
8.2 Stationary Statistical Solutions 176
8.3 Comments and Bibliographical Notes............................... 181

9 Global Attractors and a Lubrication Problem
9.1 Fractal Dimension ... 183
9.2 Abstract Theorem on Finite Dimensionality and an Algorithm... 185
9.3 An Application to a Shear Flow in Lubrication Theory 193
9.3.1 Formulation of the Problem 193
9.3.2 Energy Dissipation Rate Estimate 196
9.3.3 A Version of the Lieb–Thirring Inequality 200
9.3.4 Dimension Estimate of the Global Attractor 201
9.4 Comments and Bibliographical Notes............................... 204
10 Exponential Attractors in Contact Problems

10.1 Exponential Attractors and Fractal Dimension ... 207

10.2 Planar Shear Flows with the Tresca Friction Condition 211

10.2.1 Problem Formulation ... 211

10.2.2 Existence and Uniqueness of a Global in Time Solution 218

10.2.3 Existence of Finite Dimensional Global Attractor 222

10.2.4 Existence of an Exponential Attractor ... 229

10.3 Planar Shear Flows with Generalized Tresca Type Friction Law 231

10.3.1 Classical Formulation of the Problem ... 231

10.3.2 Weak Formulation of the Problem ... 233

10.3.3 Existence and Properties of Solutions .. 236

10.3.4 Existence of Finite Dimensional Global Attractor 241

10.3.5 Existence of an Exponential Attractor ... 246

10.4 Comments and Bibliographical Notes ... 248

11 Non-autonomous Navier–Stokes Equations and Pullback Attractors

11.1 Determining Modes .. 251

11.2 Determining Nodes .. 256

11.3 Pullback Attractors for Asymptotically Compact Non-autonomous Dynamical Systems ... 260

11.4 Application to Two-Dimensional Navier–Stokes Equations in Unbounded Domains ... 268

11.5 Comments and Bibliographical Notes ... 274

12 Pullback Attractors and Statistical Solutions

12.1 Pullback Attractors and Two-Dimensional Navier–Stokes Equations 277

12.2 Construction of the Family of Probability Measures 281

12.3 Liouville and Energy Equations .. 285

12.4 Time-Dependent and Stationary Statistical Solutions 288

12.5 The Case of an Unbounded Domain .. 291

12.6 Comments and Bibliographical Notes ... 295

13 Pullback Attractors and Shear Flows

13.1 Preliminaries .. 297

13.2 Formulation of the Problem .. 298

13.3 Existence and Uniqueness of Global in Time Solutions 301

13.4 Existence of the Pullback Attractor .. 305

13.5 Fractal Dimension of the Pullback Attractor ... 310

13.6 Comments and Bibliographical Notes ... 316

14 Trajectory Attractors and Feedback Boundary Control in Contact Problems

14.1 Setting of the Problem ... 317

14.2 Weak Formulation of the Problem .. 319
14.3 Existence of Global in Time Solutions 322
14.4 Existence of Attractors ... 329
14.5 Comments and Bibliographical Notes 335

15 Evolutionary Systems and the Navier–Stokes Equations 337
15.1 Evolutionary Systems and Their Attractors 337
15.2 Three-Dimensional Navier–Stokes Problem with Multivalued Friction .. 340
15.3 Existence of Leray–Hopf Weak Solution 342
15.4 Existence and Invariance of Weak Global Attractor, and Weak Tracking Property 351
15.5 Comments and Bibliographical Notes 356

16 Attractors for Multivalued Processes in Contact Problems 359
16.1 Abstract Theory of Pullback \mathcal{D}-Attractors for Multivalued Processes .. 359
16.2 Application to a Contact Problem 366
16.3 Comments and Bibliographical Notes 376

References ... 377

Index ... 387
Navier-Stokes Equations
An Introduction with Applications
Łukaszewicz, G.; Kalita, P.
2016, XIV, 390 p. 24 illus., Hardcover
ISBN: 978-3-319-27758-5