1 Introduction ... 1

Part I Problem Description

2 Bike Sharing in the Context of Urban Mobility ... 7
 2.1 Mobility, Urban Transportation Challenges, and Trends 8
 2.1.1 Mobility Needs and Behavior ... 9
 2.1.2 Basics of Urban Transportation ... 10
 2.1.3 Urban Transportation Challenges ... 13
 2.1.4 Trends in Urban Mobility and Transportation 14
 2.2 Bike Sharing Systems as a Concept of Shared Mobility 15
 2.2.1 Usage-Oriented Motives for Shared Mobility 15
 2.2.2 Business Models of Shared Mobility Systems 18
 2.2.3 Information Systems Support of Bike Sharing Systems 21
 2.2.4 General Guidelines on the Planning, Implementation, and Operation of BSS ... 25

3 Service Network Design as a Logistical Challenge in the Reliable Provision of Service in Bike Sharing Systems ... 31
 3.1 Classification of Logistical Planning Levels for SMS 32
 3.2 Service Network Design for Tactical Planning of BSS 35
 3.2.1 General Concept of Service Network Design in Freight Transportation ... 35
 3.2.2 Special Requirements of Tactical Planning in BSS 37
 3.3 Appreciation of Literature Related to Logistical Planning Levels for SMS ... 40
 3.3.1 Operational and Strategic Planning ... 40
 3.3.2 Tactical Planning ... 43
 3.4 Intelligent Data Analysis and Optimization for Service Network Design of Bike Sharing Systems ... 45
Part II Intelligent Data Analysis

4 Determination of Typical Bike Flows 51
 4.1 An Information Model for Generation of Typical Bike Flows 52
 4.1.1 Combining Intelligent Data Analysis and Transportation Planning 52
 4.1.2 Formalization of the Information Model 55
 4.2 Intelligent Data Analysis for Parameterization of the Information Model 60
 4.2.1 Preprocessing to Create the Target Data Set 64
 4.2.2 Data Exploration to Understand Bike Imbalances and Determine the Temporal Scope of Tactical Planning 66
 4.2.3 Determine Trip Purposes by Cluster Analysis 67

5 Case Study: Generation of Typical Bike Flows for Citybike Wien 81
 5.1 Preprocessing to Create the Target Data Set 82
 5.2 Spatial and Temporal Exploration of Trips 84
 5.2.1 Spatial Exploration to Understand Trip Generation and Attraction 84
 5.2.2 Temporal Exploration to Determine the Tactical Planning Scope 87
 5.2.3 Spatiotemporal Exploration to Show the Flaw of Averages 92
 5.3 Determination of Trip Purposes 94
 5.3.1 Temporal Distribution of Trips 95
 5.3.2 Spatial Distribution of Trips 99
 5.4 Generation and Validation of Typical Bike Flows 101
 5.5 Generating Artificial Instances of Bike Sharing Systems 104

Part III Optimization

6 Service Network Design of Bike Sharing Systems 113
 6.1 Related Approaches of Dynamic Service Network Design 113
 6.2 Mixed-integer Programming Formulation for SND of BSS 117
 6.3 A Hybrid Metaheuristic to Solve the Service Network Design Model 122
 6.3.1 Selecting a Suitable Hybrid Metaheuristic Concept 122
 6.3.2 MIP-Based Large Neighborhood Search for Dynamic SND of BSS 125
 6.3.3 Obtaining a Starting Solution by LP Relaxation 128
6.4 Investigating the Performance of Solution Methods Using Artificial Instances 129
 6.4.1 Experimental Setup .. 129
 6.4.2 Performance of Solution Methods 131
 6.4.3 Effect of Neighborhood Operators 132

7 Case Study: Service Network Design of Citybike Wien 137
 7.1 Experimental Setup ... 137
 7.2 Performance of Solution Methods and Neighborhood Operators ... 138
 7.2.1 Performance of Solution Methods 138
 7.2.2 Effect of Neighborhood Operators 140
 7.3 Service Network Design for Different Scenarios 141
 7.3.1 The Current System Configuration with Low Demand 142
 7.3.2 Comparison of Demand Scenarios 147
 7.4 The Benefit and Usefulness of Service Network Design 153

Part IV Conclusion

8 Conclusions and Outlook .. 157

Bibliography .. 161
Service Network Design of Bike Sharing Systems
Analysis and Optimization
Vogel, P.
2016, XII, 167 p. 50 illus., 20 illus. in color., Hardcover
ISBN: 978-3-319-27734-9