Contents

1 Introduction .. 1

Part I Problem Description

2 Bike Sharing in the Context of Urban Mobility 7
 2.1 Mobility, Urban Transportation Challenges, and Trends 8
 2.1.1 Mobility Needs and Behavior 9
 2.1.2 Basics of Urban Transportation 10
 2.1.3 Urban Transportation Challenges 13
 2.1.4 Trends in Urban Mobility and Transportation 14
 2.2 Bike Sharing Systems as a Concept of Shared Mobility 15
 2.2.1 Usage-Oriented Motives for Shared Mobility 15
 2.2.2 Business Models of Shared Mobility Systems 18
 2.2.3 Information Systems Support of Bike Sharing Systems .. 21
 2.2.4 General Guidelines on the Planning, Implementation,
 and Operation of BSS ... 25

3 Service Network Design as a Logistical Challenge in the Reliable
 Provision of Service in Bike Sharing Systems 31
 3.1 Classification of Logistical Planning Levels for SMS 32
 3.2 Service Network Design for Tactical Planning of BSS 35
 3.2.1 General Concept of Service Network Design in Freight
 Transportation .. 35
 3.2.2 Special Requirements of Tactical Planning in BSS 37
 3.3 Appreciation of Literature Related to Logistical Planning Levels
 for SMS ... 40
 3.3.1 Operational and Strategic Planning 40
 3.3.2 Tactical Planning .. 43
 3.4 Intelligent Data Analysis and Optimization for Service Network
 Design of Bike Sharing Systems 45
Part II Intelligent Data Analysis

4 Determination of Typical Bike Flows ... 51
 4.1 An Information Model for Generation of Typical Bike Flows 52
 4.1.1 Combining Intelligent Data Analysis and Transportation
 Planning ... 52
 4.1.2 Formalization of the Information Model 55
 4.2 Intelligent Data Analysis for Parameterization of the Information
 Model .. 60
 4.2.1 Preprocessing to Create the Target Data Set 64
 4.2.2 Data Exploration to Understand Bike Imbalances
 and Determine the Temporal Scope
 of Tactical Planning ... 66
 4.2.3 Determine Trip Purposes by Cluster Analysis 67

5 Case Study: Generation of Typical Bike Flows
 for Citybike Wien ... 81
 5.1 Preprocessing to Create the Target Data Set 82
 5.2 Spatial and Temporal Exploration of Trips 84
 5.2.1 Spatial Exploration to Understand Trip Generation
 and Attraction ... 84
 5.2.2 Temporal Exploration to Determine the Tactical Planning
 Scope ... 87
 5.2.3 Spatiotemporal Exploration to Show the Flaw
 of Averages ... 92
 5.3 Determination of Trip Purposes 94
 5.3.1 Temporal Distribution of Trips 95
 5.3.2 Spatial Distribution of Trips 99
 5.4 Generation and Validation of Typical Bike Flows 101
 5.5 Generating Artificial Instances of Bike Sharing Systems ... 104

Part III Optimization

6 Service Network Design of Bike Sharing Systems 113
 6.1 Related Approaches of Dynamic Service Network Design ... 113
 6.2 Mixed-integer Programming Formulation for SND of BSS 117
 6.3 A Hybrid Metaheuristic to Solve the Service Network Design
 Model .. 122
 6.3.1 Selecting a Suitable Hybrid Metaheuristic Concept 122
 6.3.2 MIP-Based Large Neighborhood Search for Dynamic
 SND of BSS .. 125
 6.3.3 Obtaining a Starting Solution by LP Relaxation 128
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.4 Investigating the Performance of Solution Methods Using Artificial Instances</td>
<td>129</td>
</tr>
<tr>
<td>6.4.1 Experimental Setup</td>
<td>129</td>
</tr>
<tr>
<td>6.4.2 Performance of Solution Methods</td>
<td>131</td>
</tr>
<tr>
<td>6.4.3 Effect of Neighborhood Operators</td>
<td>132</td>
</tr>
<tr>
<td>7 Case Study: Service Network Design of Citybike Wien</td>
<td>137</td>
</tr>
<tr>
<td>7.1 Experimental Setup</td>
<td>137</td>
</tr>
<tr>
<td>7.2 Performance of Solution Methods and Neighborhood Operators</td>
<td>138</td>
</tr>
<tr>
<td>7.2.1 Performance of Solution Methods</td>
<td>138</td>
</tr>
<tr>
<td>7.2.2 Effect of Neighborhood Operators</td>
<td>140</td>
</tr>
<tr>
<td>7.3 Service Network Design for Different Scenarios</td>
<td>141</td>
</tr>
<tr>
<td>7.3.1 The Current System Configuration with Low Demand</td>
<td>142</td>
</tr>
<tr>
<td>7.3.2 Comparison of Demand Scenarios</td>
<td>147</td>
</tr>
<tr>
<td>7.4 The Benefit and Usefulness of Service Network Design</td>
<td>153</td>
</tr>
<tr>
<td>Part IV Conclusion</td>
<td></td>
</tr>
<tr>
<td>8 Conclusions and Outlook</td>
<td>157</td>
</tr>
<tr>
<td>Bibliography</td>
<td>161</td>
</tr>
</tbody>
</table>
Service Network Design of Bike Sharing Systems
Analysis and Optimization
Vogel, P.
2016, XII, 167 p. 50 illus., 20 illus. in color., Hardcover
ISBN: 978-3-319-27734-9