Contents

1 Introduction .. 1
 1.1 Background ... 1
 1.2 Polymorphism ... 3
 1.3 Multi-component Crystalline Systems: Solvates, Salts and Co-crystals ... 4
 1.4 Amorphous Solids 6
 1.5 Importance of Solid-State Form for Pharmaceutical Industry .. 6
 1.6 Crystallisation .. 7
 1.7 Crystallisation Techniques 8
 1.8 Control of Solid Form 10
 1.9 Computational Methods 13
 1.9.1 Crystal Structure Prediction 13
 1.9.2 Energetics of Non-bonded Interactions: The PIXEL/Semi-classical Density Sums Methods .. 16
 1.10 Experimental and Computational Studies on Structurally Related Compounds .. 18
 References .. 23

2 Aims and Objectives ... 29
 2.1 Aims ... 29
 2.2 Objectives ... 30

3 Materials and Methods 31
 3.1 Material .. 31
 3.2 Methods .. 31
 3.2.1 Crystallisation Techniques 31
 3.2.2 X-Ray Crystallography 33
 3.2.3 Thermal Analysis 35
 3.2.4 Raman and Infrared Spectroscopy 35
 3.2.5 PIXEL Calculations 35
 3.2.6 Crystal Packing Analysis 36
 References .. 36
4 Development and Validation of High-Throughput Crystallisation and Analysis (HTCAA) Methodology for Physical Form Screening

4.1 Introduction

4.2 Sample Preparation and Methodology Development

4.2.1 96/48 Quartz Multi-well Plate

4.2.2 Preparation of 96-Well Plate for Salt Screening of Amoxapine

4.2.3 Preparation of 48-Well Plate for Physical Form Screening of Clozapine

4.2.4 Preparation of 96-Well Plate for Physical Form Screening of Olanzapine

4.2.5 Raman Microscopy

4.2.6 Chemometric Analysis

4.2.7 Scale-up and Characterisation of Novel Forms

4.3 Results and Discussion

4.3.1 Salt Screening of Amoxapine

4.3.2 Physical Form Screening of Clozapine

4.3.3 Physical Form Screening of Olanzapine

4.4 Key Findings of the Developed HTCAA Methodology

4.5 Summary

References

5 Predicting Crystallisability of Organic Molecules Using Statistical Modelling Techniques

5.1 Statistical Modelling Techniques

5.1.1 Introduction

5.1.2 Principal Component Analysis

5.1.3 Criteria for Deciding the Number of Principal Components

5.1.4 Random Forests Classification Method

5.1.5 Applications of Statistical Modelling Techniques in Pharmaceutical Industry

5.2 Descriptor Calculations, Model Building and Validation

5.2.1 Training Dataset and 2- and 3-Dimensional Descriptors Calculations

5.2.2 Training the Statistical Model

5.3 Results and Discussion

5.3.1 Principal Component Analysis

5.3.2 Random Forests Classification Model

5.3.3 Model Optimisation Attempts

5.3.4 Important Descriptors Assessment

5.3.5 Limitations of Random Forests Classification Model

5.4 Summary

References
6 Exploring the Crystal Structure Landscape of Olanzapine

6.1 Introduction

6.2 Experimental Procedures

6.2.1 Crystallisation

6.2.2 Variable Temperature-X-Ray Powder Diffraction

6.2.3 XPac Analysis of Crystal Structures of Olanzapine

6.2.4 Random Forests Classification Model of Olanzapine Solvates

6.3 Calculation and Analysis of the Crystal Energy Landscape (Crystal Structure Prediction) of Olanzapine

6.4 Results and Discussion

6.4.1 Forms I, II and III of Olanzapine

6.4.2 Solution Crystallisation of Olanzapine

6.4.3 Neat and Liquid-Assisted Grinding of Olanzapine

6.4.4 Desolvation of Olanzapine Solvates

6.4.5 Melt Quenching and Recrystallisation of Amorphous Olanzapine

6.4.6 Spray Drying and Freeze Drying of Olanzapine

6.5 Molecular Packing Analysis of Olanzapine Crystal Structures Using XPac

6.6 Hydrogen-Bonding Analysis of Olanzapine Crystal Structures

6.6.1 Hydrogen Bonding in Olanzapine Solvates Based on Packing Type SC31

6.6.2 Hydrogen Bonding in Olanzapine Solvates Based on Packing Type SC32

6.6.3 Hydrogen Bonding in Olanzapine Solvates Based on Packing Type, SC33

6.6.4 Hydrogen Bonding in Other Olanzapine Solvates Based on SC0, SC11 and SC22

6.7 Prediction of Olanzapine Solvate Formation Using Random Forests Classification Model

6.7.1 Random Forests Classification Model – Prediction Results

6.7.2 Important Solvent Physicochemical Descriptors for Random Forests Classification Model of Olanzapine Solvates

6.8 Crystal Energy Landscape of Olanzapine

6.9 PIXEL Calculations on Olanzapine

6.10 Concomitant Appearance of Form III with Other Polymorphs of Olanzapine

6.11 Prolific Solvate Formation of Olanzapine
6.12 Challenges with Crystal Structure Prediction of Olanzapine and Unobserved Calculated Structures .. 146
6.13 Summary .. 147
References .. 148

7 Exploring the Physical Form Landscape of Clozapine, Amoxapine and Loxapine ... 153

7.1 Introduction .. 153
 7.1.1 Background of Molecule in Group 1-Clozapine 154
 7.1.2 Background of Molecules in Group 2-Amoxapine and Loxapine ... 154

7.2 Experimental Details ... 155
 7.2.1 Principal Component Analysis of Solvent Properties ... 155
 7.2.2 Crystallisation Experiments of Clozapine 155
 7.2.3 Crystallisation Experiments of Amoxapine 155
 7.2.4 Crystallisation Experiments of Loxapine 156
 7.2.5 Preliminary Crystal Structure Prediction Studies
 for Clozapine, Amoxapine and Loxapine. 158
 7.2.6 Solid-State Calculations Using CASTEP 158
 7.2.7 Structure Analysis 159

7.3 Results and Discussion ... 159
 7.3.1 Physical Form Screening of Clozapine 159
 7.3.2 Physical Form Screening Results of Amoxapine ... 173
 7.3.3 Physical Form Screening Results of Loxapine 178

7.4 Summary .. 190
References .. 191

8 Conclusions and Further Work 195

8.1 Conclusions and Further Work 195
 8.1.1 Development and Validation of High Throughput
 Crystallisation and Analysis Methodology
 for Physical Form Screening 198
 8.1.2 Predicting Crystallisability of Organic Molecules
 Using Statistical Modelling Techniques 198
 8.1.3 Exploring the Physical Form Landscape of Structurally
 Related Pharmaceutical Molecules in Group 1
 (Olanzapine and Clozapine) and 2 (Amoxapine and
 Loxapine) ... 199

8.2 Further Work .. 201
 8.2.1 Development and Validation of High Throughput
 Crystallisation and Analysis Methodology for Physical
 Form Screening ... 201
 8.2.2 Predicting Crystallisability of Organic Molecules
 Using Statistical Modelling Techniques 202
8.2.3 Exploring the Physical Form Landscape of Structurally Related Pharmaceutical Molecules in Group 1 (Olanzapine and Clozapine) and 2 (Amoxapine and Loxapine) .. 203
References .. 204

Appendix ... 207