Contents

Part I Submodular Functions and Optimization

1 Submodular Functions and Matroids .. 3
 1.1 Submodular Functions .. 3
 1.2 Matroids .. 9
 1.2.1 Definition and Examples 10
 1.2.2 Matroid Basis, Rank, and Closure 11
 1.2.3 Matroid Dual and Union 16
 1.3 Summary and Notes .. 18

2 Centralized Submodular Optimization 19
 2.1 Applications of Submodular Maximization 19
 2.1.1 Sensor Placement 20
 2.1.2 Influence in Social Networks 20
 2.1.3 Document Summarization 21
 2.2 Cardinality-Constrained Submodular Maximization 21
 2.3 Robust Submodular Maximization 26
 2.4 Submodular Maximization with Matroid Constraints 28
 2.5 Online Submodular Maximization 34
 2.5.1 Background on Experts Algorithms 34
 2.5.2 Online Submodular Maximization Algorithm 35
 2.6 Summary and Notes .. 37

3 Distributed Submodular Maximization 41
 3.1 Distributed Greedy Algorithms 41
 3.2 Exchange-Based Distributed Submodular Maximization
 Algorithms .. 44
 3.2.1 Case Study ... 48
3.3 Submodular Maximization Using Parallel Processors 50
3.4 Summary and Notes 52
References 52

Part II Submodularity in Dynamics and Control

4 Background on Control of Networked Systems 57
4.1 Graph Theory 57
4.1.1 Definitions and Preliminaries 57
4.1.2 Algebraic Graph Theory 59
4.2 Consensus in Networked Systems 62
4.2.1 Consensus in Static Networks 63
4.2.2 Consensus in Networks with Switching Topology 65
4.2.3 Consensus of Second-Order Integrators 66
4.3 Distributed Monitoring and Estimation 68
4.3.1 Sensing Model 68
4.3.2 Distributed Estimation Dynamics 70
4.3.3 Convergence of Estimation Dynamics 71
4.4 Opinion Dynamics in Social Networks 73
4.4.1 The Stubborn Agent Interaction Model 74
4.5 Networked Systems with Input Nodes 76
4.5.1 Leader–Follower Containment 76
4.5.2 Distributed Estimation with Input Nodes 78
4.6 Summary and Notes 80
References 80

5 Submodular Optimization for Smooth Convergence 83
5.1 Convergence in Networked Systems 83
5.1.1 System Model and Convergence Error Metric 84
5.2 Submodular Optimization for Smooth Convergence in Static Networks 85
5.2.1 Problem Formulation in Static Networks 86
5.2.2 Connection Between Convergence Error and Random Walks 87
5.2.3 Supermodularity of Convergence Error 88
5.2.4 Algorithms for Smooth Convergence in Static Networks 90
5.2.5 Case Study 92
5.3 Submodular Optimization for Smooth Convergence in Dynamic Networks 93
5.3.1 Input Selection for Known Topology Dynamics 95
5.3.2 Input Selection under Unknown Topology Dynamics 96
5.3.3 Case Study 102
6 Selecting Catalyst Nodes for Synchronization

6.1 The Kuramoto Model
6.1.1 Definition of the Model
6.1.2 Types of Synchronization
6.2 Conditions for Synchronization
6.2.1 Homogeneous Oscillators
6.2.2 Heterogeneous Oscillators
6.3 Submodular Optimization Approach to Practical Synchronization
6.3.1 Ensuring Existence of a Positive Invariant Set
6.3.2 Ensuring Convergence to Practical Synchronization
6.3.3 Submodular Optimization for Catalyst Selection
6.4 Synchronization Case Study
6.5 Summary and Notes

7 Input Selection for Robustness to Noise

7.1 Noise in Networked Systems
7.1.1 Sources and Impact of Noise
7.1.2 Mitigating Noise in Networked Systems
7.2 Modeling the Impact of Noise
7.2.1 System Model
7.2.2 Noise Metric Definition and Problem Formulation
7.2.3 Connection Between Error and Effective Resistance
7.3 Convex Optimization Approach to Input Selection
7.3.1 Convex Problem Mapping
7.4 Submodular Optimization Approach to Input Selection for Robustness to Noise
7.4.1 Error Due to Noise and Commute Time
7.4.2 Supermodularity of Error Due to Noise
7.4.3 Input Selection Algorithms for Static Networks
7.4.4 Case Study
7.5 Minimizing Error Due to Noise in Dynamic Networks
7.5.1 Input Selection under Random Failures
7.5.2 Input Selection under Switching Topologies
7.5.3 Input Selection under Arbitrary Time-Varying Topology
7.5.4 Case Study
7.6 Summary and Notes

References
Resilience to Link Noise Injection Attacks

8.1 Link Noise Injection Attacks
- 8.1.1 Mitigating Noise Injection

8.2 Noise Injection Model and Background
- 8.2.1 System Model
- 8.2.2 Adversary Model
- 8.2.3 Background on Game Theory

8.3 Fixed Input Selection for Robustness
- 8.3.1 Stackelberg Game Formulation
- 8.3.2 Characterizing the Attack Strategy
- 8.3.3 Fixed Input Selection
- 8.3.4 Case Study

8.4 Selecting a Time-Varying Input Set
- 8.4.1 Game Formulation
- 8.4.2 Equilibrium Analysis and Selection Algorithm
- 8.4.3 Repeated Strategy with Improved Optimality Bound
- 8.4.4 Case Study

8.5 Summary and Notes

Joint Performance and Controllability of Networked Systems

9.1 Controllability of Networked Systems

9.2 Input Selection for Controllability

9.3 Input Selection for Performance and Controllability
- 9.3.1 Controllability as a Matroid Constraint
- 9.3.2 Graph Controllability Index

9.4 Controllability of Consensus Networks
- 9.4.1 Eigenvalue-Based Controllability Conditions
- 9.4.2 Graph Symmetry-Based Controllability Conditions

9.5 Joint Performance and Controllability in Consensus Networks
- 9.5.1 Linear Descriptor Systems
- 9.5.2 Controllability of Linear Descriptor Systems
- 9.5.3 Matroid Constraints for Controllability of Consensus Networks
- 9.5.4 Input Selection Algorithms for Controllability
- 9.5.5 Performance and Controllability of Consensus Networks
- 9.5.6 Case Study

9.6 Summary and Notes

References
Submodularity in Dynamics and Control of Networked Systems
Clark, A.; Alomair, B.; Bushnell, L.; Poovendran, R.
2016, XVII, 210 p. 63 illus., 48 illus. in color., Hardcover
ISBN: 978-3-319-26975-7