Contents

1 Tangent Cones, Tangent Spaces, Tangent Stars: Secant, Tangent, Tangent Star and Dual Varieties of an Algebraic Variety
1.1 Tangent Cones and Tangent Spaces of an Algebraic Variety and Their Associated Varieties
1.2 Join of Varieties
1.3 Linear Projections
1.4 Terracini’s Lemma and Its First Applications
1.5 Dual Varieties and Contact Loci of General Tangent Linear Spaces
Exercises
Hint for Problems of Chap. 1

2 The Hilbert Scheme of Lines Contained in a Variety and Passing Through a General Point
2.1 Basics of Deformation Theory of (Smooth) Rational Curves on Smooth Projective Varieties
2.2 The Hilbert Scheme of Lines Contained in a Projective Variety and Passing Through a Point
2.2.1 Notation, Definitions and Preliminary Results
2.2.2 Singularities of $\mathcal{L}_{x,X}$
2.3 Equations for $\mathcal{L}_{x,X} \subset \mathbb{P}((t_xX)^*)$
2.3.1 V_1 Versus $T_xX \cap X$ for a Quadratic Variety
2.3.2 Tangential Projection and Second Fundamental Form
2.3.3 Approach to $B_{x,X} = \mathcal{L}_{x,X}$ via [19]
2.3.4 Lines on Prime Fano Manifolds
2.4 A Condition for Non-extendability
2.4.1 Extensions of $\mathcal{L}_{x,Y} \subset \mathbb{P}^{n-1}$ via $\mathcal{L}_{x,X} \subset \mathbb{P}^n$

xiii
3 The Fulton–Hansen Connectedness Theorem, Scorza’s Lemma and Their Applications to Projective Geometry 75
 3.1 The Enriques–Zariski Connectedness Principle, the Fulton–Hansen Connectedness Theorem and the Generalizations of Some Classical Results in Algebraic Geometry ... 75
 3.2 Zak’s Applications to Projective Geometry 82
 3.3 Tangential Invariants of Algebraic Varieties and Scorza’s Lemma ... 86
 3.4 Severi’s Characterization of the Veronese Surface Versus Mori’s Characterization of Projective Spaces 89

4 Local Quadratic Entry Locus Manifolds and Conic Connected Manifolds .. 95
 4.1 Definitions and First Geometrical Properties 95
 4.2 Qualitative Properties of CC-Manifolds and of LQEL-Manifolds 97
 4.3 Classification of LQEL-Manifolds with $\delta \geq \dim(X)/2$ 104
 4.4 Classification of Conic-Connected Manifolds and of Manifolds with Small Dual 107
 4.4.1 Classification of Varieties with Small Dual 108
 4.4.2 Bounds for the Dual Defect of a Manifold and for the Secant Defect of an LQEL-Manifold 112

5 Hartshorne Conjectures and Severi Varieties 115
 5.1 Hartshorne Conjectures ... 115
 5.2 Proofs of Hartshorne’s Conjecture for Quadratic Manifolds and of the Classification of Quadratic Hartshorne Manifolds ... 120
 5.2.1 The Bertram–Ein–Lazarsfeld Criterion for Complete Intersections .. 120
 5.2.2 Faltings’ and Netsvetaev’s Conditions for Complete Intersections ... 122
 5.2.3 Proofs of the Main Results 124
 5.3 Speculations on Hartshorne’s Conjecture 125
 5.4 A Refined Linear Normality Bound and Severi Varieties 129
 5.5 Reconstruction of Severi Varieties of Dimension 2, 4, 8 and 16 .. 133

6 Varieties n-Covered by Curves of a Fixed Degree and the XJC Correspondence ... 137
 6.1 Preliminaries and Definitions .. 138
 6.1.1 Examples and Reinterpretation of Known Results 139
 6.2 Bounding the Embedding Dimension 140
 6.2.1 Previously Known Versions 141
 6.2.2 Looking for the Function $\pi(r, n, \delta)$ via Projective Geometry .. 141
 6.2.3 Relation to the Castelnuovo–Harris Bound 145
6.3 Rationality of $\overline{X}^{r+1}(n, \delta)$ and of the General Curve of the n-Covering Family ... 147
6.3.1 Bound for the Top Self Intersection of a Nef Divisor 150
6.4 Quadro-Quadric Cremona Transformations and $\overline{X}^1(3,3) \subset \mathbb{P}^{2n+1}$... 152
6.5 A Digression on Power Associative Algebras and Some Involutive Cremona Transformations ... 159
6.5.1 Power Associative Algebras, Jordan Algebras and Generalizations of Laplace Formulas 163
6.6 The XJC-Correspondence .. 175
7 Hypersurfaces with Vanishing Hessian 177
7.1 Preliminaries, Definitions, Statement of the Problem and of the Classical Results ... 178
7.2 Instances and Relevance of Hesse’s Claim in Geometry and in Commutative Algebra .. 181
7.2.1 The Polar Map .. 181
7.2.2 Curvature and $h(f)$.. 183
7.2.3 What Does the Condition f Divides $h(f)$ Measure? 185
7.2.4 Weak and Strong Lefschetz Properties for Standard Artinian Gorenstein Graded Algebras 186
7.3 The Gordan–Noether Identity .. 192
7.3.1 Hesse’s Claim for $N = 2, 3$ 196
7.3.2 Cremona Equivalence with a Cone 198
7.3.3 Applications of the Gordan–Noether Identity to the Polar Map .. 201
7.4 The Gordan–Noether–Franchetta Classification in \mathbb{P}^4 and Examples in Arbitrary Dimension 203
7.4.1 Gordan–Noether, Franchetta, Permutti and Perazzo Examples ... 203
7.4.2 A Geometrical Proof of the Gordan–Noether and Franchetta Classification of Hypersurfaces in \mathbb{P}^4 with Vanishing Hessian .. 207
7.5 The Perazzo Map of Hypersurfaces with Vanishing Hessian 210
7.6 Cubic Hypersurfaces with Vanishing Hessian and Their Classification for $N \leq 6$... 213
7.6.1 Classes of Cubic Hypersurfaces with Vanishing Hessian According to Perazzo and Canonical Forms of Special Perazzo Cubic Hypersurfaces .. 213
7.6.2 Cubics with Vanishing Hessian in \mathbb{P}^N with $N \leq 6$ 215
7.6.3 Examples in Higher Dimension 216

References... 221

Index.. 229
On the Geometry of Some Special Projective Varieties
Russo, F.
2016, XXVI, 232 p., Softcover
ISBN: 978-3-319-26764-7