Contents

1 Interaction of a Charged Particle with Strong Plane Electromagnetic Wave in Vacuum ... 1
 1.1 Classical Dynamics of a Particle in the Field of Strong Plane Electromagnetic Wave ... 1
 1.2 Intensity Effect. Mass Renormalization 4
 1.3 Radiation of a Particle in the Field of Strong Monochromatic Wave .. 10
 1.4 Nonlinear Radiation Effects in Superstrong Wave Fields 14
 1.5 Quantum Description. Volkov Solution of the Dirac Equation .. 19
 1.6 Nonlinear Compton Effect .. 25
Bibliography ... 32

2 Interaction of Charged Particles with Strong Electromagnetic Wave in Dielectric Media. Induced Nonlinear Cherenkov Process ... 35
 2.1 Particle Classical Motion in the Field of Strong Plane EM Wave in a Medium ... 36
 2.2 Nonlinear Cherenkov Resonance and Critical Field. Threshold Phenomenon of Particle “Reflection” 37
 2.3 Particle Capture by a Plane Electromagnetic Wave in a Medium .. 45
 2.4 Laser Acceleration in Gaseous Media. Cherenkov Accelerator .. 48
 2.5 Nonlinear Compton Scattering in a Medium 54
 2.6 Radiation of a Particle in Capture Regime. Cherenkov Amplifier .. 57
Bibliography ... 67
3 Quantum Theory of Induced Multiphoton Cherenkov Process 69
 3.1 Quantum Description of Induced Cherenkov Process in Strong Wave Field .. 69
 3.2 Quantum Description of “Reflection” Phenomenon. Particle Beam Quantum Modulation at X-Ray Frequencies 75
 3.3 Exact Solution of the Dirac Equation for Induced Cherenkov Process .. 79
 3.4 Secular Perturbation at Nonlinear Cherenkov Resonance 83
 3.5 Inelastic Diffraction Scattering on a Traveling Wave 90
 3.6 Quantum Modulation of Charged Particles 93
 Bibliography ... 96

4 Cyclotron Resonance at the Particle–Strong Wave Interaction . . 97
 4.1 Autoresonance in the Uniform Magnetic Field in Vacuum 98
 4.2 Exact Solution of the Dirac Equation for Cyclotron Resonance ... 102
 4.3 Multiphoton Excitation of Landau Levels by Strong EM Wave .. 110
 4.4 Cyclotron Resonance in a Medium. Nonlinear Threshold Phenomenon of “Electron Hysteresis” 115
 4.5 High Harmonics Radiation at Cyclotron Resonance 123
 Bibliography ... 127

5 Nonlinear Dynamics of Induced Compton and Undulator Processes ... 129
 5.1 Interaction of Charged Particles with Superstrong Counterpropagating Waves of Different Frequencies 130
 5.2 Interaction of Charged Particles with Superstrong Wave in a Wiggler .. 136
 5.3 Inelastic Diffraction Scattering on a Moving Phase Lattice .. 140
 5.4 Inelastic Diffraction Scattering on a Traveling Wave in an Undulator ... 144
 5.5 Quantum Modulation of Particle Beam in Induced Compton Process ... 147
 5.6 Quantum Modulation of Particle Beam in the Undulator 150
 5.7 Nonlinear Acceleration of Ions by Counterpropagating Laser Pulses: Generation of Ion/Nuclei Bunches from Nanotargets .. 154
 Bibliography ... 159

6 Induced Nonstationary Transition Process 161
 6.1 Effect of Abrupt Temporal Variation of Dielectric Permittivity of a Medium .. 162
 6.2 Classical Description of Induced Nonstationary Transition Process ... 164
 6.3 Quantum Description of Multiphoton Interaction 169
12.6 Asymptotic Formulas for Plasma Nonlinear Absorption at Arbitrary Large Intensities .. 409
12.7 Microscopic Quantum Theory of Absorption of Powerful X-Ray in Plasma .. 414
Bibliography ... 421

13.1 Relativistic HHG in the Counterpropagating Waves Field ... 424
13.2 Relativistic High-Order Harmonic Emission ... 431
13.3 Relativistic HHG with Copropagating Ultrastrong Laser and Ion Beams in Plasma 433
13.4 HHG by Intense Coherent X-Ray on Highly-Charged Hydrogen-like Ions ... 440
13.5 Effective Hamiltonian for Collective Two-Photon Decay of Positronium Atoms ... 446
13.6 Spontaneous Two-Photon Decay of a Para-Positronium ... 449
13.7 Gamma-Ray Laser Based on the Collective Decay of Positronium Atoms in Bose–Einstein Condensate 452
13.8 The Influence of the Confinement and Interaction Between the Positronium Atoms on the γ-Ray Generation Process ... 458
Bibliography ... 460

14 “Relativistic” Nonlinear Electromagnetic Processes in Graphene ... 463

14.1 Effective “Relativistic” Hamiltonian for Graphene Quasiparticles ... 464
14.2 Microscopic Theory of Strong Laser Fields Interaction with Graphene ... 468
14.3 Multiphoton Resonant Excitation and Rabi Oscillations in Graphene .. 473
14.4 Particle-Hole Multiphoton Excitation and High Harmonics Generation in Graphene 478
14.5 Graphene Interaction with Strong Laser Radiation Beyond the Dirac Cone Approximation 481
14.6 Coherent Effects and Control of Macroscopic Quantum States in Graphene ... 483
14.7 Resonant Excitations of Fermi-Dirac Sea in a Bilayer Graphene .. 488
14.8 Generation of Harmonics in a Bilayer Graphene at the Particle-Hole Multiphoton Excitation 495
Bibliography ... 498

Index .. 501
Relativistic Nonlinear Electrodynamics
The QED Vacuum and Matter in Super-Strong Radiation Fields
Avetissian, H.K.
2016, XVII, 506 p. 59 illus. in color., Hardcover
ISBN: 978-3-319-26382-3