Contents

1 Interaction of a Charged Particle with Strong Plane Electromagnetic Wave in Vacuum
 1.1 Classical Dynamics of a Particle in the Field of Strong Plane
 Electromagnetic Wave 1
 1.2 Intensity Effect. Mass Renormalization 4
 1.3 Radiation of a Particle in the Field of Strong Monochromatic
 Wave .. 10
 1.4 Nonlinear Radiation Effects in Superstrong Wave Fields 14
 1.5 Quantum Description. Volkov Solution
 of the Dirac Equation 19
 1.6 Nonlinear Compton Effect 25
Bibliography ... 32

2 Interaction of Charged Particles with Strong Electromagnetic
 Wave in Dielectric Media. Induced Nonlinear
 Cherenkov Process ... 35
 2.1 Particle Classical Motion in the Field of Strong Plane EM
 Wave in a Medium 36
 2.2 Nonlinear Cherenkov Resonance and Critical Field.
 Threshold Phenomenon of Particle “Reflection” 37
 2.3 Particle Capture by a Plane Electromagnetic Wave
 in a Medium ... 45
 2.4 Laser Acceleration in Gaseous Media.
 Cherenkov Accelerator 48
 2.5 Nonlinear Compton Scattering in a Medium 54
 2.6 Radiation of a Particle in Capture Regime. Cherenkov
 Amplifier ... 57
Bibliography ... 67
3 Quantum Theory of Induced Multiphoton Cherenkov Process ... 69
 3.1 Quantum Description of Induced Cherenkov Process in Strong Wave Field .. 69
 3.2 Quantum Description of “Reflection” Phenomenon. Particle Beam Quantum Modulation at X-Ray Frequencies 75
 3.3 Exact Solution of the Dirac Equation for Induced Cherenkov Process .. 79
 3.4 Secular Perturbation at Nonlinear Cherenkov Resonance 83
 3.5 Inelastic Diffraction Scattering on a Traveling Wave 90
 3.6 Quantum Modulation of Charged Particles 93
Bibliography ... 96

4 Cyclotron Resonance at the Particle–Strong Wave Interaction ... 97
 4.1 Autoresonance in the Uniform Magnetic Field in Vacuum 98
 4.2 Exact Solution of the Dirac Equation for Cyclotron Resonance ... 102
 4.3 Multiphoton Excitation of Landau Levels by Strong EM Wave. ... 110
 4.4 Cyclotron Resonance in a Medium. Nonlinear Threshold Phenomenon of “Electron Hysteresis” 115
 4.5 High Harmonics Radiation at Cyclotron Resonance 123
Bibliography ... 127

5 Nonlinear Dynamics of Induced Compton and Undulator Processes .. 129
 5.1 Interaction of Charged Particles with Superstrong Counterpropagating Waves of Different Frequencies 130
 5.2 Interaction of Charged Particles with Superstrong Wave in a Wiggler .. 136
 5.3 Inelastic Diffraction Scattering on a Moving Phase Lattice. 140
 5.4 Inelastic Diffraction Scattering on a Traveling Wave in an Undulator .. 144
 5.5 Quantum Modulation of Particle Beam in Induced Compton Process .. 147
 5.6 Quantum Modulation of Particle Beam in the Undulator 150
 5.7 Nonlinear Acceleration of Ions by Counterpropagating Laser Pulses: Generation of Ion/Nuclei Bunches from Nanotargets ... 154
Bibliography ... 159

6 Induced Nonstationary Transition Process 161
 6.1 Effect of Abrupt Temporal Variation of Dielectric Permittivity of a Medium .. 162
 6.2 Classical Description of Induced Nonstationary Transition Process .. 164
 6.3 Quantum Description of Multiphoton Interaction 169
6.4 Electron–Positron Pair Production by a γ-Quantum in a Medium .. 175
6.5 Annihilation of Electron–Positron Pairs in a Medium 181
6.6 Electron–Positron Pair Production by Strong EM Wave in Nonstationary Medium 186
Bibliography ... 191

7 Induced Channeling Process in a Crystal 193
7.1 Positron–Strong Wave Interaction at the Planar Channeling in a Crystal .. 193
7.2 Induced Interaction of Electrons with Strong EM Wave at the Axial Channeling 200
7.3 Quantum Description of the Induced Planar Channeling Effect ... 203
7.4 Quantum Description of the Induced Axial Channeling Effect ... 208
7.5 Multiphoton Induced Channeling Effect 213
Bibliography ... 220

8 Nonlinear Mechanisms of Free Electron Laser 221
8.1 Self-consistent Maxwell and Relativistic Quantum Kinetic Equations for Compton FEL with Strong Pump Laser Field .. 222
8.2 Nonlinear Quantum Regime of X-Ray Compton Backscattering Laser .. 229
8.3 Quantum Description of FEL Nonlinear Dynamics in a Wiggler .. 234
8.4 High-Gain Regime of FEL ... 238
8.5 Quantum SASE Regime of FEL ... 242
8.6 High-Gain FEL on the Coherent Bremsstrahlung in a Crystal .. 246
8.7 Nonlinear Scheme of X-Ray FEL on the Channeling Particle Beam in a Crystal 251
8.8 Compton FEL on the Channeling Particle Beam ... 258
8.9 Nonlinear Scheme of X-Ray Laser on the Ion and Pump Laser Beams .. 261
8.10 Crystal Potential as a Pump Field for Generation of Coherent X-Ray ... 264
Bibliography .. 270

9 Electron–Positron Pair Production in Superstrong Laser Fields .. 273
9.1 Vacuum in Superstrong Electromagnetic Fields.
Klein Paradox .. 274
9.2 Electron–Positron Pair Production by Superstrong Laser Field and γ-Quantum 280
9.3 Pair Production via Superstrong Laser Beam Scattering on a Nucleus .. 286
9.4 Nonlinear e^-, e^+ Pair Production in Plasma by Strong EM Wave .. 291
9.5 Pair Production by Superstrong EM Waves in Vacuum ... 300

Bibliography .. 306

10 Relativistic Quantum Theory of Scattering on Arbitrary Electrostatic Potential and Stimulated Bremsstrahlung 309

10.1 Relativistic Wave Function of Spinor Particle Elastic Scattering on Arbitrary Electrostatic Potential in Generalized Eikonal Approximation .. 310
10.2 Spinor Particle Scattering in the Coulomb Field by Generalized Eikonal Approximation .. 315
10.3 Elastic Scattering Cross Section in Generalized Eikonal Approximation ... 319
10.4 Bremsstrahlung in Superstrong Radiation Fields: Born Approximation .. 321
10.5 Generalized Eikonal Approximation for Stimulated Bremsstrahlung ... 331
10.6 Discussion of the GEA Wave Function in Various Limits ... 341

Bibliography .. 347

11 Interaction of Strong Laser Radiation with Highly Charged Atoms-Ions ... 349

11.1 Highly Charged Hydrogen-Like Atoms-Ions in the Strong High-Frequency Laser Field .. 350
11.2 Above-Threshold Ionization of Atoms-Ions By Superstrong Laser Fields ... 359
11.3 The Relativistic Born Approximation by the Potential of Atomic Remainder in ATI .. 365
11.4 Probability of ATI Process for Circular and Linear Polarizations of an EM Wave .. 368
11.5 Acceleration or Deceleration of the Atoms by Counterpropagating Laser Beams .. 376

Bibliography .. 386

12 Interaction of Superstrong Laser Radiation with Plasma .. 389

12.1 Electron Wavefunction in SB Process with Exact Consideration of Scattering Coulomb Field .. 390
12.2 Radiation Absorption in Plasma via Inverse SB at the Exact Consideration of Scattering Field .. 394
12.3 Absorption at Anisotropic Electron Distribution ... 397
12.4 Absorption at Isotropic Electron Distribution .. 400
12.5 Nonlinear Inverse-Bremsstrahlung Absorption Coefficient ... 404

Bibliography .. 407
12.6 Asymptotic Formulas for Plasma Nonlinear Absorption at Arbitrary Large Intensities .. 409
12.7 Microscopic Quantum Theory of Absorption of Powerful X-Ray in Plasma ... 414
Bibliography .. 421

13.1 Relativistic HHG in the Counterpropagating Waves Field 424
13.2 Relativistic High-Order Harmonic Emission 431
13.3 Relativistic HHG with Copropagating Ultrastrong Laser and Ion Beams in Plasma 433
13.4 HHG by Intense Coherent X-Ray on Highly-Charged Hydrogen-like Ions ... 440
13.5 Effective Hamiltonian for Collective Two-Photon Decay of Positronium Atoms ... 446
13.6 Spontaneous Two-Photon Decay of a Para-Positronium 449
13.7 Gamma-Ray Laser Based on the Collective Decay of Positronium Atoms in Bose–Einstein Condensate 452
13.8 The Influence of the Confinement and Interaction Between the Positronium Atoms on the γ-Ray Generation Process .. 458
Bibliography .. 460

14 “Relativistic” Nonlinear Electromagnetic Processes in Graphene ... 463
14.1 Effective “Relativistic” Hamiltonian for Graphene Quasiparticles .. 464
14.2 Microscopic Theory of Strong Laser Fields Interaction with Graphene ... 468
14.3 Multiphoton Resonant Excitation and Rabi Oscillations in Graphene .. 473
14.4 Particle-Hole Multiphoton Excitation and High Harmonics Generation in Graphene 478
14.5 Graphene Interaction with Strong Laser Radiation Beyond the Dirac Cone Approximation 481
14.6 Coherent Effects and Control of Macroscopic Quantum States in Graphene .. 483
14.7 Resonant Excitations of Fermi-Dirac Sea in a Bilayer Graphene ... 488
14.8 Generation of Harmonics in a Bilayer Graphene at the Particle-Hole Multiphoton Excitation 495
Bibliography .. 498

Index .. 501
Relativistic Nonlinear Electrodynamics
The QED Vacuum and Matter in Super-Strong Radiation Fields
Avetissian, H.K.
2016, XVII, 506 p. 59 illus. in color., Hardcover
ISBN: 978-3-319-26382-3