1 The Cathodic Polarization Curves in Electrodeposition of Metals ... 1
 1.1 Introduction ... 1
 1.2 Polarization Curves for the Case of Massive Active Cathodes 2
 1.2.1 Polarization Curves Without Included Ohmic Potential Drop 2
 1.2.2 Polarization Curves with Included Ohmic Potential Drop 10
 1.3 Experimental Measured Polarization Curves 13
 1.3.1 Polarization Curves for the Different Kinds of the Electrodeposition Process Control 13
 1.3.2 Polarization Curves Measured for Different i_0/i_L Ratios 20
 References ... 21

2 Mechanisms of Formation of Some Forms of Electrodeposited Pure Metals .. 25
 2.1 Electrodeposition on Native Substrate 25
 2.1.1 Macroelectrodes and Microelectrodes 25
 2.1.2 Active Microelectrodes Placed Inside Diffusion Layer of the Active Macroelectrode 27
 2.1.3 Dendritic Deposits .. 39
 2.2 Electrodeposition on the Inert Substrate 55
 2.2.1 Cementation and Prevention of it by Deposition from the Complex Salt Solutions 55
 2.2.2 Surface Film Formation 55
 2.2.3 Active Microelectrodes Inside the Diffusion Layer of the Inert Macroelectrode 83
2.2.4 Dendritic Growth Initiation Inside Diffusion Layer of the Macroelectrode in the Case of Very Fast Electrodeposition Processes 90
2.2.5 Spongy Deposit Formation 94
2.2.6 Whisker Deposits .. 101
References ... 103

3 Current Distribution in Electrochemical Cells 111
3.1 Introduction .. 111
3.2 The Current Density Distribution in Homogeneous Fields 112
3.3 The Edge Effect ... 114
3.4 Two Equal Plane Parallel Electrode Arrangement 115
3.4.1 Ohmic Resistance of the Cell 115
3.4.2 The Very Edge Ohmic Resistance 118
3.4.3 The Quantitative Consideration of the Edge Effect 119
3.4.4 The Depth of the Penetration of a Current Line Between the Electrode Edges and the Cell Side Walls 120
3.4.5 The Critical Current Density for Dendritic Growth Initiation at the Edges ... 126
3.4.6 Cells with Low Anode Polarization 127
3.4.7 Corner Weakness Phenomena in Electroforming 134
References ... 138

4 Electrodeposition at a Periodically Changing Rate 141
4.1 Introduction ... 141
4.1.1 Reversing Current ... 141
4.1.2 Pulsating Current .. 143
4.1.3 Alternating Current Superimposed on Direct Current 143
4.1.4 Pulsating Overpotential ... 144
4.1.5 Reversing Overpotential .. 144
4.2 Surface Concentration of Depositing Ions in the Periodic Conditions ... 144
4.2.1 Electrodeposition with Periodically Changing Range in the Millisecond Range .. 144
4.2.2 Capacitance Effects .. 149
4.2.3 Reversing Current in the Second Range 150
4.3 Prevention of the Formation of Spongy Deposits and the Effect on Dendritic Particles .. 152
4.3.1 Basic Facts ... 152
4.3.2 Quantitative Treatment .. 154
4.4 Compact Deposits .. 158
4.4.1 Surface Film ... 158
4.4.2 Electrode Surface Coarsening 160
4.5 Current Density and Morphology Distribution on a Macropore .. 164
References ... 167
5 Electrodeposition of Metals with Hydrogen Evolution 171
 5.1 Introduction .. 171
 5.2 Mechanism of Formation of the Honeycomb-Like Structure:
 The Concept of “Effective Overpotential” 173
 5.2.1 The Concept of “Effective Overpotential”
 Applied for Metal Electrodeposition Under
 an Imposed Magnetic Field 175
 5.3 The Honeycomb-Like Structures: Basic Facts, Phenomenology,
 and Factors Affecting Their Formation
 (Cu as a Model System) 176
 5.3.1 Basic Facts ... 176
 5.3.2 Phenomenology of Formation of the Honeycomb-Like
 Structures ... 178
 5.3.3 Factors Affecting the Size and Distribution
 of Holes in the Honeycomb-Like Structures 179
 5.4 Effect of Additives on Micro- and Nanostructural
 Characteristics of the 3D Foam or the Honeycomb-Like
 Electrodes ... 182
 5.5 Structural Characteristics of the 3D Foam
 or the Honeycomb-Like Structures of the Other Metals 183
 5.5.1 The Honeycomb-Like or 3D Foam Structures
 of the Normal Metals 184
 5.5.2 The Honeycomb-Like or 3D Foam Structures
 of the Intermediate Metals 185
 5.5.3 The Honeycomb-Like or 3D Foam Structures
 of the Inert Metals 187
 5.6 Application of Periodically Changing Regimes
 of Electrolysis on Metal Electrodeposition in the Hydrogen
 Evolution Range .. 187
 5.6.1 The Regime of Pulsating Overpotential
 in the Hydrogen Evolution Range: Optimization
 of Formation of the Honeycomb-Like Electrodes 190
 5.6.2 The Pulsating Current in the Hydrogen
 Evolution Range ... 193
 5.6.3 The Reversing Current in the Hydrogen Evolution
 Range .. 196
 5.6.4 Comparison of the Honeycomb-Like Structures
 Obtained by the Galvanostatic and the Reversing
 Current Regimes .. 199
 References ... 200
9 Chemical Deposition of Metals and Alloys from Aqueous Solutions

9.1 Introduction .. 329

9.2 Types of Chemical Deposition of Metals from Aqueous Solutions ... 330

9.2.1 Galvanic Displacement Deposition 330

9.2.2 Autocatalytic Deposition 352

References .. 363

Index ... 365
Morphology of Electrochemically and Chemically Deposited Metals
Popov, K.I.; Djokić, S.S.; Nikolić, N.D.; Jović, V.D.
2016, XVII, 368 p. 226 illus., 225 illus. in color., Hardcover
ISBN: 978-3-319-26071-6