The term erosion implies gradual loss of something important that will eventually undermine the health or stability of dependent individuals or communities. As applied to genetic diversity, erosion is the loss of genetic diversity within a species. It can happen fairly quickly, as with a catastrophic event, or change in land use that removes large numbers of individuals and their habitat. But it can also occur more gradually and go unnoticed for a long time. Genetic erosion represents the loss of entire populations genetically differentiated from others, or the loss or change in frequency of specific alleles within a population, or the species as a whole, or the loss of allelic combinations in plants, trees, and animals.

Until the 1940s, the centers of origin of crop species and woody plants were considered limitless sources of genetic variability. After World War II, agriculture in developing countries suffered great changes. The expanded use of improved varieties resulted in the reduction of traditional varieties, a process called genetic erosion. The expansion of the agricultural frontiers also contributed to the risk of loss of the wild relatives of crop species. Some 10,000 different plant species have been used by humans for food and fodder production since the dawn of agriculture 10,000 years ago.

Yet today just 150 crops feed most human beings on the planet, and just 12 crops provide 80% of food energy, while wheat, rice, maize, and potato alone provide 60% of stable food. Reduction of agricultural biodiversity means fewer options for ensuring more diverse nutrition, enhancing food production, raising incomes, coping with environmental constraints, and sustainably managing ecosystems. Recognizing, safeguarding, and using the potential and diversity of nature are critical for food security and sustainable agriculture. Biodiversity conservation targets three interdependent levels: ecosystems, species, and genes. Genetic erosion can represent the loss of entire populations genetically differentiated from others, the loss or change in frequency of specific alleles (i.e., different forms of a gene) within populations or over the species as a whole, or the loss of allelic combinations. Genetically eroded populations may be less competitive with new introduced invasive species. Genetic diversity is important to a species’ fitness, long-term viability, and ability to adapt to changing environmental
conditions. Genetic erosion can be addressed at several levels in the spectrum of management activities. This book deals with a broad spectrum of topics on genetic erosion and biodiversity in crop plants and trees.

We believe that this book will be useful to botanists, geneticists, molecular biologists, environmentalists, policy makers, conservationists, and NGOs working for the protection and conservation of species in a changing environment.

M.R. Ahuja
S. Mohan Jain