Contents

Alternative Frameworks for Personalized Insulin–Glucose Models
Harald Kirchsteiger, Hajrudin Efendic, Florian Reiterer and Luigi del Re

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Introduction</td>
<td>1</td>
</tr>
<tr>
<td>2 Alternatives for Modeling</td>
<td>2</td>
</tr>
<tr>
<td>3 Model Structures</td>
<td>5</td>
</tr>
<tr>
<td>4 Interval Models</td>
<td>9</td>
</tr>
<tr>
<td>4.1 Continuous Time System Identification</td>
<td>9</td>
</tr>
<tr>
<td>4.2 Interval Model Results</td>
<td>11</td>
</tr>
<tr>
<td>5 A Probabilistic Approach</td>
<td>18</td>
</tr>
<tr>
<td>5.1 Gaussian and Generalized Gaussian Mixture Models</td>
<td>19</td>
</tr>
<tr>
<td>5.2 Modeling Method and Model Structure</td>
<td>20</td>
</tr>
<tr>
<td>5.3 Modeling Results</td>
<td>22</td>
</tr>
<tr>
<td>6 Conclusion and Outlook</td>
<td>26</td>
</tr>
<tr>
<td>References</td>
<td>27</td>
</tr>
</tbody>
</table>

Accuracy of BG Meters and CGM Systems: Possible Influence Factors for the Glucose Prediction Based on Tissue Glucose Concentrations
Guido Freckmann, Stefan Pleus, Manuela Link and Cornelia Haug

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Introduction</td>
<td>32</td>
</tr>
<tr>
<td>2 SMBG Accuracy and CGM Calibration with SMBG Results</td>
<td>32</td>
</tr>
<tr>
<td>2.1 SMBG Accuracy</td>
<td>32</td>
</tr>
<tr>
<td>2.2 CGM Calibration with SMBG Results</td>
<td>34</td>
</tr>
<tr>
<td>3 Accuracy of CGM Systems</td>
<td>36</td>
</tr>
<tr>
<td>3.1 Mean Absolute Relative Difference</td>
<td>36</td>
</tr>
<tr>
<td>3.2 Precision Absolute Relative Difference</td>
<td>38</td>
</tr>
<tr>
<td>4 Glucose Prediction Based on Tissue Glucose Concentrations</td>
<td>39</td>
</tr>
<tr>
<td>References</td>
<td>40</td>
</tr>
</tbody>
</table>
CGM—How Good Is Good Enough? 43
Michael Schoemaker and Christopher G. Parkin
1 Background .. 43
2 CGM Performance Assessment 44
 2.1 Sensor Signal .. 44
 2.2 Reference Methodology 45
 2.3 Accuracy and Precision 46
3 State of the Art ... 48
4 Unresolved Issues .. 49
 4.1 Transient Sensor Signal Disruption 49
 4.2 Transient Significant CGM Inaccuracies 50
5 Next Steps in CGM Development 51
6 Conclusion .. 51
References ... 52

Can We Use Measurements to Classify Patients Suffering from Type 1 Diabetes into Subcategories and Does It Make Sense? 57
Florian Reiterer, Harald Kirchsteiger, Guido Freckmann and Luigi del Re
1 Introduction ... 57
2 Database of CGMS Recordings 60
3 Modelling Using a Simple Transfer Function Model 61
 3.1 Description of the Model and System Identification 61
 3.2 Trends and Correlations 64
 3.3 Clustering and Classification 69
 3.4 Discussion of Results and Further Outlook 70
4 Analysis of the High Frequency Content of CGMS Signals 72
 4.1 Filtering of CGMS Signals 72
 4.2 Trends and Classification 73
 4.3 Discussion of Results and Further Outlook 76
References ... 77

Prevention of Severe Hypoglycemia by Continuous EEG Monitoring 79
Claus Bogh Juhl, Jonas Duun-Henriksen, Jens Ahm Sørensen, Anne Sophie Sejling and Rasmus Elsborg Madsen
1 Background .. 80
2 Clinical Studies—Proof of Concept 81
3 The Device .. 83
4 Quantitative Evaluation of EEG Recorded with the Partly Implanted EEG Recorder 84
5 Development of an Algorithm for Detection and Warning of Severe Hypoglycaemia in Type 1 Diabetes 85
6 Clinical Studies—Preliminary Results with Implanted Device 88
Physiology-Based Interval Models: A Framework for Glucose Prediction Under Intra-patient Variability

Jorge Bondia and Josep Vehi

1 Introduction ... 159
2 Interval Models .. 161
3 Simulating Interval Models .. 163
 3.1 Interval Analysis ... 164
 3.2 Monotone Input–Output Systems 168
4 Interval Glucose Predictors ... 172
 4.1 Bergman Model Predictor Based on Modal Interval Analysis 172
 4.2 Bergman Model Predictor Based on Monotone Systems Theory 173
 4.3 Postprandial Glucose Prediction Using Interval Models 175
5 Interval Model Identification 175
6 Conclusions .. 178
References ... 179

Modeling and Prediction Using Stochastic Differential Equations

Rune Juhl, Jan Kloppenborg Møller, John Bagterp Jørgensen and Henrik Madsen

1 Introduction ... 183
2 Data and Modeling ... 185
 2.1 Single Data Series ... 186
 2.2 Independent Data Series 192
 2.3 Population Extension ... 193
 2.4 Prior Information ... 196
3 Example: Modeling the Effect of Exercise on Insulin Pharmacokinetics in “Continuous Subcutaneous Insulin Infusion” Treated Type 1 Diabetes Patients ... 197
 3.1 Data ... 197
 3.2 The Gray Box Insulin Model 198
 3.3 Exercise Effects ... 199
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.4</td>
<td>Model Comparison</td>
<td>200</td>
</tr>
<tr>
<td>3.5</td>
<td>Predictions</td>
<td>202</td>
</tr>
<tr>
<td>4</td>
<td>Other Topics</td>
<td>202</td>
</tr>
<tr>
<td>4.1</td>
<td>Transformations</td>
<td>202</td>
</tr>
<tr>
<td>4.2</td>
<td>Identification</td>
<td>203</td>
</tr>
<tr>
<td>4.3</td>
<td>Simulation/Prediction Models</td>
<td>203</td>
</tr>
<tr>
<td>4.4</td>
<td>Testing and Confidence Intervals</td>
<td>203</td>
</tr>
<tr>
<td>5</td>
<td>Summary</td>
<td>204</td>
</tr>
<tr>
<td>References</td>
<td></td>
<td>208</td>
</tr>
</tbody>
</table>

Uncertainties and Modeling Errors of Type 1 Diabetes Models
Levente Kovács and Péter Szalay
1 Introduction | 211
2 Modeling Diabetes | 212
 2.1 Linear Parameter Varying Model | 214
3 Model Reduction | 215
4 State Estimation | 218
 4.1 Sigma-Point Selection | 219
5 Model Uncertainty | 221
 5.1 Error Weighting Function | 221
6 Conclusion | 223
References | 224

Recent Results on Glucose–Insulin Predictions by Means of a State Observer for Time Delay Systems
Pasquale Palumbo, Pierdomenico Pepe, Simona Panunzi and Andrea De Gaetano
1 Introduction | 227
2 The DDE Model of the Glucose–Insulin System | 229
3 Observer-Based Control by Means of Intravenous Insulin Infusion | 230
 3.1 Synthesis of the Glucose Control Law | 231
 3.2 Evaluation Criteria and Validation | 233
4 Observer-Based Control by Means of Subcutaneous Insulin Infusion | 236
5 Conclusions | 239
References | 239

Performance Assessment of Model-Based Artificial Pancreas Control Systems
Jianyuan Feng, Kamuran Turksoy and Ali Cinar
1 Introduction | 243
2 GPC and Controller Error Detection | 245
 2.1 GPC in AP System | 245
Prediction Methods for Blood Glucose Concentration
Design, Use and Evaluation
Kirchsteiger, H.; Jørgensen, J.B.; Renard, E.; del Re, L.
(Eds.)
2016, XIV, 265 p. 93 illus., 72 illus. in color., Hardcover
ISBN: 978-3-319-25911-6