Contents

1 Introduction ... 1
References .. 7

2 Methods of Assessing Integrity of Pipeline Systems with Different Types of Defects 9
2.1 Causes of Pipeline Failures .. 9
2.2 Pipelines Limit States .. 11
2.3 Analysis of In-Line Inspections (ILI) Results 11
2.4 Analysis of Existing Corrosion Degradation Models of Pipeline Systems .. 16
2.5 Analysis of Residual Strength of Main Pipelines Segments with Localized Corrosion Defects 17
2.6 Assessment of Pipeline Systems Reliability 25
2.7 Reliability Level Embedded in Pipeline Design Codes 29
2.8 Entropy of Degrading Pipeline Systems 32
2.9 Prediction of Fracture and Assessment of Pipelines State Subjected to SCC .. 33
2.10 Predictive Maintenance of Pipeline Systems with Defects .. 35
References .. 36

3 Basics of ILI of Pipelines 45
3.1 A Brief History of Creation and the Current State of Art of Smart ILI Technology 45
3.2 ILI Tools ... 49
3.3 Code Requirements for ILI of Pipelines 61
3.3.1 ILI Stages ... 63
3.3.2 Periodicity of ILI 69
3.3.3 International ILI Quality Standards 70
References .. 71
4 Methods of ILI Results Analysis ... 73
 4.1 Introduction to ILI Result Analysis 74
 4.1.1 General Characteristic of the ILI Tool as a Measurement System 74
 4.1.2 Why Adjust the Raw MFL ILI Readings? 75
 4.1.3 Types of Defect Size Adjustments 78
 4.2 Assessment of the Minimal Required Number of Measurements for Consistent Statistical Analysis of ILI Results 80
 4.2.1 Approach Based on the Central Limit Theorem 80
 4.2.2 Approach Based on the Binomial Distribution 82
 4.2.3 Approach Based on the χ^2 Distribution 82
 4.3 ILI Tools Quality Metrics ... 85
 4.3.1 Practical Elements of Stochastic Theory of Measurements as Applied to the ILI 85
 4.3.2 Quality Metrics of ILI Instruments 87
 4.3.3 Additional Quality Metrics of ILI Tools 96
 4.3.4 Quality Metrics of Pipeline Residual Lifetime Prognosis 97
 4.3.5 Efficacy Metrics of ILI Instruments 98
 4.4 Method of Increasing Authenticity of ILI Measurements 101
 4.4.1 Analysis of Existing Methods of ILI 101
 4.4.2 Possible Ways of Increasing Validity of ILI Tool Measurements 104
 4.4.3 Analysis of Obtained Results 110
 4.5 Full Statistical Analysis Method of ILI Results 120
 4.5.1 Prerequisites of Using the Method 122
 4.5.2 Assessment of the Constant Bias of the ILI Tool Measurements 122
 4.5.3 Assessment of the ILI Instrument Accuracy 127
 4.5.4 Method of Increasing the Measurement Accuracy (Calibration) of Defect Parameters 130
 4.5.5 Validation of the Implemented Measurement Model 137
 4.5.6 Statistical Analysis Algorithm of the ILI Results 139
 4.5.7 Some Results of Application of the FSA Method to Modeled Measurements 144
 4.5.8 Some Results of Real Case Analysis 149
 4.6 Criteria for Rejecting ILI Results 156
 4.7 Analysis of Reproducibility and Repeatability of Measurements ... 163
 4.7.1 Defect Parameters Measured by One Operator and Different Measurement Tools 165
 4.7.2 Defect Parameters Measured by Several Operators and One and the Same Measurement Tool 168
4.7.3 The Problem of Negative Values of Variances of Sources of Measurement Scatter and Its Possible Solution 170
4.7.4 Cases of Practical Implementation of the Methodology 171

4.8 Methods of Updating the True Number of Defects in a Pipeline Using ILI Results .. 175
4.8.1 Direct Statistical Method ... 176
4.8.2 Bayesian Upgrade of the Number of Defects in a Pipeline Using Results of One Inspection 184
4.8.3 Bayesian Upgrade of the Number of Defects in a Pipeline Using Results of Several Inspections 196

4.9 Construction of the ROC Curve Using ILI Results and Approximation of the Standard POD Curve 203
4.9.1 Construction of the ROC Curve Using ILI Results 204
4.9.2 A Consistent Approximation of the POD Curve 207

4.10 Statistical Clusterization of the “Loss-of-Metal” Type Defects 209
4.10.1 Probabilistic Approach to Defect Clustering 213
4.10.2 Probabilistic Clustering of Defects Based on Measurements by a Single Instrument 214
4.10.3 Probabilistic Clustering of Defects Using Results of Measurements of Screen Images of Defects as Provided by the ILI Tool 217

References ... 221

5 The Human Dimension of Pipeline Integrity and Safety 225
5.1 Intrinsic Energy–Entropy Source of Risk in Pipelines 226
5.2 Holistic Approach to Assessing the Role of Human Factor 226
5.3 The Homeostasis Concept ... 227
5.4 Workability (Capacity for Work) 228
5.5 Three Types of Human Factor ... 229
5.6 Psychological Causes of Mistakes 229
5.7 General Classification of Human Errors 230
5.8 Possible Causes of Errors in the Life Cycle of Pipeline Systems 232
5.9 Classification of Human Errors Associated with In-Line Inspections (Analysis of API 1163) 233
5.10 ILI Error Frequency Reduction .. 238
5.11 Efficient Human Error Control Strategy 238
5.12 Most Often Used Human Error Quantification Methods (1989, CPQRA) 239
5.13 Human Factor #1 Analysis .. 241
5.14 Quantitative Assessment of Diagnosticians Errors
(Human Factor #2) ... 242
5.15 Human Factor #3 Reliability as a Pipeline or ILI System
Component ... 244
5.16 Human Factor Risk Minimization in Pipeline Operation 246
5.17 Illustrative Cases .. 250
References .. 255

6 Probability of Failure (Reliability) of Pipelines 257
6.1 Formal Description of the Pipeline Reliability Assessment
Method ... 258
6.2 Reliability Assessment of a Defective Pipeline Segment
Using Monte-Carlo Simulation Method 260
6.3 Reliability Assessment of a Defective Pipeline Segment
Using the Gram–Charlier–Edgeworth Series Method 261
6.4 Recommendations for Choosing Probabilistic Characteristics
of Pipeline Parameters ... 264
6.4.1 Adequacy Test of the G-C-E Method 266
6.4.2 Computer Time Needed for Using the MC
and the G-C-E Methods ... 270
6.5 Assessment of the Reliability Level Embedded
in Pipeline Design Codes .. 270
6.5.1 Reliability Level Empirically Embedded
in International Codes ... 271
6.5.2 Method of Assessing the Reliability Level Embedded
in Pipeline Design Codes Based on a Single Safety
Coefficient ... 278
6.5.3 Numerical Analysis of the Reliability Level Actually
Embedded in Pipeline Design Codes 282
6.6 Classical Approach to Reliability Assessment
of the Whole Pipeline as a System 289
References .. 291

7 Markov Models of Pipeline Degradation Process 293
7.1 Formal Description of the Pure Birth (Death)
Markov Process ... 295
7.2 Pure Birth Markov Model of Corrosion Defects Growth 296
7.3 Algorithm for Assessing the Predicting Probabilities
of the Defect Depths Being in Given States 298
7.4 Validation of the Markov Model for Corrosion
Defect Growth ... 300
7.5 Markov Model for the Pipeline Residual Strength Degradation Process ... 304
7.5.1 Residual Strength Degradation Model for a Pipeline Cross Section with a Growing Defect 305
7.5.2 Model of Residual Strength Degradation of a Pipeline with Multiple Defects as a Distributed System 309
7.5.3 Assessment of the Gamma-Percentile Pipeline Residual Strength ... 310
7.5.4 Adequacy Test of Markov Model for the Residual Strength Degradation ... 312
7.5.5 Algorithm for Assessing the Pipeline GPRL and the Probability of the Defects Failure Pressure Being in One of the Given States 314
7.6 Method of Assessing Pipeline System POF Using Markov Processes ... 318
7.7 Optimization of the Timing for Performing Maintenance/Repair Work on a Pipeline System 320
7.8 Pipeline System Entropy ... 322
7.8.1 Pipeline System Entropy Generated by Degradation of the Residual Strength of Corrosion-Type Defects 323
7.8.2 Entropy Analysis of a Pipeline and Its Defective Cross Sections ... 323
References .. 328

8 Method of Assessing the Probabilistic Characteristics of Crack Growth Under the Joint Influence of Random Loads and Different Types of Corrosion Processes. 331
8.1 Residual Lifetime Assessment of a Gas Pipeline Segment with Longitudinal SC Type Cracks Under Constant Pressure ... 332
8.1.1 Algorithm for the Case of a Single Longitudinal Crack ... 332
8.1.2 Algorithm for Accounting for the Interaction of Multiple Longitudinal Cracks 334
8.1.3 Numerical Cases ... 336
8.2 Residual Life Time of a Gas Pipeline with a Single Longitudinal SC Crack Under Cyclic Internal Pressure 341
8.3 Implementation of the Most Important Sampling Method for Assessing Pipeline POF with a Single SC Type Crack ... 345
8.4 Updating Reliability Assessment of Pipeline in SCC Condition Using ILI Results 350
8.5 Updating Reliability Assessment of a Pipeline with SCC Cracks Using the Bayesian Network Approach 352
 8.5.1 Sequential Connection of Pipeline Segments 352
 8.5.2 Parallel Connection of Pipeline Segments 357
References ... 359

9 Methodology of Predictive Maintenance of Pipelines 361
 9.1 Method for Assessing the Time of Occurrence of Critical
 and Limit States of a Pipeline with Corrosion-Type Defects ... 361
 9.2 Different Approaches to Assessing the Rate
 of Defect Parameter Growth 370
 9.3 Assessment of Corrosion Rates for Developing
 RBIs and IMPs for Production Pipelines 374
 9.3.1 CO₂ Type Corrosion Control Strategies 376
 9.3.2 Economics of ILI and DA for Production Pipelines 378
 9.3.3 State of the Art in RBI and Corrosion Rate
 Assessment for Production Pipelines 378
 9.3.4 CR Assessments for Production Pipelines 379
 9.3.5 Posing the Production Pipeline CR Assessment
 Problem .. 380
 9.3.6 The Stochastic Solution of Assessing the CR
 for Production Pipelines 381
 9.3.7 Two Illustrative Case Studies of Production
 Pipelines ... 384
 9.4 Some Results of Real-Life Pipeline Segments Analysis ... 392
References ... 403

Conclusion ... 407
Diagnostics and Reliability of Pipeline Systems
Timashev, S.; Bushinskaya, A.
2016, XXI, 407 p. 186 illus., 79 illus. in color., Hardcover
ISBN: 978-3-319-25305-3