Chapter 2
Metrics on Modular Spaces

Abstract In this chapter, we address the metrizability of modular spaces.

2.1 Modular Spaces

A pseudomodular \(w \) on \(X \) (cf. Fig. 1.2 on p. 5) induces an equivalence relation \(\sim \) on \(X \) as follows: given \(x, y \in X \),

\[x \sim y \iff w^{x,y} \neq \infty \iff w_\lambda(x, y) < \infty \text{ for some } \lambda > 0, \]

where \(\lambda = \lambda(x, y) \), possibly, depends on \(x \) and \(y \). A modular space is any equivalence class with respect to \(\sim \). More explicitly, let us fix an element \(x^0 \in X \). The set

\[X^*_w \equiv X^*_w(x^0) = \{ x \in X : \exists \lambda = \lambda(x) > 0 \text{ such that } w_\lambda(x, x^0) < \infty \} \]

is called a modular space (around \(x^0 \)), and \(x^0 \) is called the center of \(X^*_w(x^0) \) (\(x^0 \) is a representative of the equivalence class \(X^*_w(x^0) \)). Note that \(w^{x,y} \neq \infty \) for all \(x, y \in X^*_w(x^0) \).

If \(w_{+0} \) and \(w_{-0} \) are the right and left regularizations of \(w \), then (1.2.4) imply \(X^*_w(0) = X^*_w(0) = X^*_w \).

Two more modular spaces (around \(x^0 \)) can be defined making use of other equivalence relations on \(X \):

\[X^0_w \equiv X^0_w(x^0) = \{ x \in X : w_\lambda(x, x^0) \to 0 \text{ as } \lambda \to \infty \} \]

and

\[X^\text{fin}_w \equiv X^\text{fin}_w(x^0) = \{ x \in X : w_\lambda(x, x^0) < \infty \text{ for all } \lambda > 0 \}. \]

As above, \(X^0_w = X^0_w = X^0_w \) and \(X^\text{fin}_w = X^\text{fin}_w = X^\text{fin}_w \).

Clearly, \(X^0_w \subset X^*_w \) and \(X^\text{fin}_w \subset X^*_w \) (with proper inclusions in general). However, if \(w \) is convex, then \(X^0_w = X^*_w \) (see Proposition 1.2.3(c)); moreover, note that this property is independent of the center \(x^0 \), i.e., \(X^0_w(x^0) = X^*_w(x^0) \) for all \(x^0 \in X \).
2.2 The Basic Metric

Example 2.1.1. The inclusion relations between the three modular spaces are illustrated by the modular \(w_\lambda(x, y) = g(\lambda)d(x, y) \) on a metric space \((X, d)\) from (1.3.1):

\[
X^*_w = \begin{cases}
\{x^0\} & \text{if } g \equiv \infty, \\
X & \text{if } g \neq \infty,
\end{cases}
\]

\[
X^0_w = \begin{cases}
\{x^0\} & \text{if } \lim_{\lambda \to \infty} g(\lambda) \neq 0, \\
X & \text{if } \lim_{\lambda \to \infty} g(\lambda) = 0,
\end{cases}
\]

and

\[
X^{\text{fin}}_w = \begin{cases}
\{x^0\} & \text{if } g(\lambda) = \infty \text{ for some } \lambda > 0, \\
X & \text{if } g(\lambda) < \infty \text{ for all } \lambda > 0.
\end{cases}
\]

In particular, for modulars \(w_\lambda(x, y) = d(x, y) \) (nonconvex) and \(w_\lambda(x, y) = d(x, y)/\lambda \) (convex) from Example 1.3.2(a), we have

\[
X^0_w = \{x^0\} \subset X^*_w = X^{\text{fin}}_w = X = X^0_w = X^*_w = X^{\text{fin}}_w.
\]

In the sequel, by the modular space we mean the set \(X^*_w \) (the largest among the three) if not explicitly stated otherwise.

2.2 The Basic Metric

We begin by introducing the basic (pseudo)metric \(d^0_w \) on the modular space \(X^*_w \).

Theorem 2.2.1. Let \(w \) be a (pseudo)modular on \(X \). Set

\[
d^0_w(x, y) = \inf \{\lambda > 0 : w_\lambda(x, y) \leq \lambda\}, \quad x, y \in X \quad (\inf \emptyset = \infty).
\]

Then \(d^0_w \) is an extended (pseudo)metric on \(X \). Furthermore, if \(x, y \in X \), \(d^0_w(x, y) < \infty \) is equivalent to \(x \sim y \), and so, \(d^0_w \) is a (pseudo)metric on \(X^*_w = X^{\text{fin}}_w(x^0) \) (for any \(x^0 \in X \)).

Proof. 1. Clearly, \(d^0_w(x, y) \in [0, \infty] \), \(d^0_w(x, x) = 0 \), and \(d^0_w(x, y) = d^0_w(y, x) \) for all \(x, y \in X \). Now, suppose \(w \) is a modular on \(X \), and \(x, y \in X \) are such that \(d^0_w(x, y) = 0 \). The definition of \(d^0_w \) implies \(w_\mu(x, y) \leq \mu \) for all \(\mu > 0 \). So, for all \(\lambda > 0 \) and \(0 < \mu < \lambda \), we have from (1.2.1): \(w_\lambda(x, y) \leq w_\mu(x, y) \leq \mu \to 0 \) as \(\mu \to +0 \). Thus \(w_\lambda(x, y) = 0 \) for all \(\lambda > 0 \), and so, by axiom (i), \(x = y \).

In order to prove the triangle inequality \(d^0_w(x, y) \leq d^0_w(x, z) + d^0_w(z, y) \) for all \(x, y, z \in X \), we assume that \(d^0_w(x, z) \) and \(d^0_w(z, y) \) are finite (otherwise, the inequality is obvious). By the definition of \(d^0_w \), given \(\lambda > d^0_w(x, z) \) and \(\mu > d^0_w(z, y) \), we find \(w_\lambda(x, z) \leq \lambda \) and \(w_\mu(z, y) \leq \mu \), and so, axiom (iii) implies

\[
w_{\lambda + \mu}(x, y) \leq w_\lambda(x, z) + w_\mu(z, y) \leq \lambda + \mu.
\]

It follows that \(d^0_w(x, y) \leq \lambda + \mu \), and it remains to take into account the arbitrariness of \(\lambda \) and \(\mu \) as above.
2. If \(d_0^w(x,y) < \infty \), then, for any \(\lambda > d_0^w(x,y) \), we have \(w_\lambda(x,y) \leq \lambda < \infty \), which
means that \(x \sim y \). Conversely, suppose \(x \sim y \), i.e., \(w_\mu(x,y) < \infty \) for some \(\mu > 0 \). We set \(\lambda = \max\{\mu, w_\mu(x,y)\} \). Since \(\lambda \geq \mu \), the monotonicity (1.2.1) of \(w \) implies \(w_\lambda(x,y) \leq w_\mu(x,y) \leq \lambda \), and so, \(d_0^w(x,y) \leq \lambda < \infty \).

3. Given \(x, y \in X^*_w \), we have \(x \sim y \), and so, \(d_0^w(x,y) < \infty \). By step 1, this means that
\(d_0^w \) is a (pseudo)metric on \(X^*_w \).

The pair \((X^*_w, d_0^w)\), being a (pseudo)metric space generated by the (pseudo)modular \(w \), is called a (pseudo)metric modular space, and we will apply this terminology if we are interested in metric properties of \(X^*_w \) with respect to \(d_0^w \) (or some other metric induced by \(w \)). We call \(X^*_w \) the modular space if the main concern is its modular properties (Sects. 4.2 and 4.3), which are outside the scope of metric properties.

Example 2.2.2. Suppose \(w_\lambda(x,y) = g(\lambda)d(x,y) \) is the modular from (1.3.1), where
\(g : (0, \infty) \to [0, \infty] \) is a nonincreasing function, \(g \not\equiv 0 \), and \(g \not\equiv \infty \). In the examples 1–6 below, we have \(X^*_w = X \), and \(x, y \in X \) and \(\lambda_0 > 0 \) are given.

1. If \(g(\lambda) = 1/\lambda^p \) (\(p \geq 0 \)), then \(d_0^w(x,y) = (d(x,y))^{1/(p+1)} \).
2. Let \(g(\lambda) = 1 \) if \(0 < \lambda < \lambda_0 \), and \(g(\lambda) = 0 \) if \(\lambda \geq \lambda_0 \). Then \(w \) is nonstrict and nonconvex, and \(d_0^w(x,y) = \min\{\lambda_0, d(x,y)\} \).
3. If \(g(\lambda) = 1/\lambda \) for \(0 < \lambda < \lambda_0 \), and \(g(\lambda) = 0 \) for \(\lambda \geq \lambda_0 \), then \(w \) is nonstrict and convex, and \(d_0^w(x,y) = \min\{\lambda_0, \sqrt{d(x,y)}\} \).
4. For \(g(\lambda) = \max\{1, 1/\lambda\} \), we have: \(w \) is strict and nonconvex, and \(d_0^w \) is given by
\[
d_0^w(x,y) = \max\{d(x,y), \sqrt{d(x,y)}\}.
\]
5. If \(g(\lambda) = \infty \) for \(0 < \lambda < \lambda_0 \), and \(g(\lambda) = 0 \) for \(\lambda \geq \lambda_0 \), then \(w \) is strict and convex, and \(d_0^w(x,y) = \lambda_0 \delta(x,y) \), where \(\delta \) is the discrete metric on \(X \).

6. Putting \(d = \delta \), for any function \(g \) as above, we have \(d_0^w(x,y) = g^0(x,y) \) with
\[
g^0 = \inf\{\lambda > 0 : g(\lambda) \leq \lambda\}.
\]

Remark 2.2.3.
1. If \(\rho \) is a classical modular on a real linear space \(X \) (cf. Sect. 1.3.3),
the set \(X_\rho = \{x \in X : \lim_{\alpha \to +0} \rho(\alpha x) = 0\} \) is called the modular space (with zero as its center). The modular space \(X_\rho \) is a linear subspace of \(X \), and the functional \(\cdot : X_\rho \to [0, \infty) \), given by \(|x|_\rho = \inf\{\varepsilon > 0 : \rho(x/\varepsilon) \leq \varepsilon\} \), is an \(F \)-norm on \(X_\rho \), i.e., given \(x, y \in X_\rho \), it satisfies the conditions: (F.1) \(|x|_\rho = 0 \) iff \(x = 0 \); (F.2) \(-|x|_\rho = |x|_\rho \); (F.3) \(|x+y|_\rho \leq |x|_\rho + |y|_\rho \); and (F.4) \(c_\rho x_n - c \rho x_n \to 0 \) as \(n \to \infty \) whenever \(c_\rho c \to c \) in \(\mathbb{R} \) and \(|x_n - x|_\rho \to 0 \) as \(n \to \infty \) (where \(x_n \in X_\rho \) for \(n \in \mathbb{N} \)). The modular space \(X^*_\rho \), which is a counterpart of \(X_\rho \), does not play that significant role in our theory as \(X_\rho \) does in the classical theory of modulars (see also Remark 2.4.3(3)).

2. Under the assumptions of Proposition 1.3.5, where \(X \) is a real linear space and
\(\rho(x) = w_1(x,0) \), we also have: \(X_\rho = X^*_\rho(0) \) is a linear subspace of \(X \), and the functional \(|x|_\rho = d_0^w(x,0), x \in X^*_\rho \), is an \(F \)-norm on \(X_\rho \).
In Theorem 2.2.1 (and Example 2.2.2(6)), we have encountered the quantity
\[g^0 = \inf \{ \lambda > 0 : g(\lambda) \leq \lambda \}, \quad (2.2.1) \]
evaluated at the nonincreasing function \(g = w^{a,y} : (0, \infty) \to [0, \infty] \), which we denoted by \(d^0_w(x,y) = (w^{a,y})^0 \). This quantity is worth a more detailed study.

Lemma 2.2.4. If \(g : (0, \infty) \to [0, \infty] \) is a nonincreasing function, then \(g^0 \in [0, \infty] \), and

(a) \(g^0 = \inf_{\lambda > 0} \max \{ \lambda, g(\lambda) \} \) (where \(\max \{ \lambda, \infty \} = \infty \) for \(\lambda > 0 \));
(b) \(g^0 < \infty \) if and only if \(g \not\equiv \infty \) (so, \(g^0 = \infty \) \(\iff g \equiv \infty \));
(c) \(g^0 \neq 0 \) if and only if \(g \not\equiv 0 \) (so, \(g^0 = 0 \) \(\iff g \equiv 0 \)).

Proof. 1. Let us prove inequality (\(\leq \)) in (a) and implication (\(\iff \)) in (b). We may assume \(g \not\equiv \infty \) (otherwise, (a) reads \(\inf \emptyset = \infty \) and holds trivially). For each \(\lambda > 0 \) such that \(g(\lambda) < \infty \), we set \(\lambda_1 = \max\{\lambda, g(\lambda)\} \). Then \(\lambda_1 \in (0, \infty) \), \(g(\lambda) \leq \lambda_1 \), and since \(\lambda \leq \lambda_1 \) and \(g \) is nonincreasing, \(g(\lambda_1) \leq g(\lambda) \). So, \(g(\lambda_1) \leq \lambda_1 \). It follows that \(g^0 \leq \lambda_1 = \max\{\lambda, g(\lambda)\} \). This proves (b)(\(\iff \)). Taking the infimum over all \(\lambda > 0 \) such that \(g(\lambda) < \infty \) (or all \(\lambda > 0 \)), we establish the inequality \(g^0 \leq \ldots \) in (a).

2. Let us prove inequality (\(\geq \)) in (a) and implication (\(\Rightarrow \)) in (b). Suppose \(g^0 \) is finite. Given \(\lambda_1 > g^0 \), we have \(g(\lambda_1) \leq \lambda_1 \), and so, \(g \not\equiv \infty \). This establishes (b)(\(\Rightarrow \)). Moreover (note that the monotonicity of \(g \) is not used),
\[
\inf_{\lambda > 0} \max\{\lambda, g(\lambda)\} \leq \inf_{\lambda > 0; g(\lambda) < \infty} \max\{\lambda, g(\lambda)\} = \max\{\lambda_1, g(\lambda_1)\} = \lambda_1.
\]
Passing to the limit as \(\lambda_1 \to g^0 \), we obtain the inequality \(g^0 \geq \ldots \) in (a).

3. (c)(\(\Rightarrow \)) If \(g \equiv 0 \), then \(g^0 = \inf(0, \infty) = 0 \) (equivalently, if \(g^0 \neq 0 \), then \(g \not\equiv 0 \)).
(c)(\(\iff \)) Let \(g^0 = 0 \). Then \(g(\mu) \leq \mu \) for all \(\mu > 0 \). Given \(\lambda > 0 \), for any \(0 < \mu < \lambda \), by virtue of the monotonicity of \(g \), we get \(0 \leq g(\lambda) \leq g(\mu) \leq \mu \). Letting \(\mu \to +0 \), we find \(g(\lambda) = 0 \) for all \(\lambda > 0 \), i.e., \(g \equiv 0 \). In other words, we have shown that \(g \not\equiv 0 \) implies \(g^0 \neq 0 \). \(\square \)

Remark 2.2.5. \(\) It is seen from the proof of Lemma 2.2.4(a) that
\[
g^0 = \inf \{ \max\{\lambda, g(\lambda)\} : \lambda > 0 \text{ such that } g(\lambda) < \infty \} \in [0, \infty) \text{ if } g \not\equiv \infty.
\]
Following the same lines as in the proof of Lemma 2.2.4, it may be shown that \(g^0 = \sup \{\lambda > 0 : g(\lambda) \geq \lambda\} \) (sup \(\emptyset = 0 \)) and \(g^0 = \sup_{\lambda > 0} \min\{\lambda, g(\lambda)\} \).

As a consequence of Theorem 2.2.1 and Lemma 2.2.4, we get the following

Corollary 2.2.6. \(d^0_w(x,y) = \inf_{\lambda > 0} \max\{\lambda, w_\lambda(x,y)\}, x, y \in X. \)

Given a nonincreasing function \(g : (0, \infty) \to [0, \infty] \), we denote by \(g_{+0} \) and \(g_{-0} \) the right and left regularizations of \(g \), defined (as in (1.2.2) and (1.2.3)) by:
$g_{+0}(\lambda) = g(\lambda + 0)$ and $g_{-0}(\lambda) = g(\lambda - 0)$ for all $\lambda > 0$. Functions g_{+0} and g_{-0} map $(0, \infty)$ into $[0, \infty]$ and are nonincreasing on $(0, \infty)$. Furthermore, g_{+0} is continuous from the right and g_{-0} is continuous from the left on $(0, \infty)$, and inequalities similar to (1.2.4) hold:

$$g(\lambda) \leq g(\lambda - 0) \leq g(\mu + 0) \leq g(\mu) \text{ in } [0, \infty] \text{ for all } 0 < \mu < \lambda. \quad (2.2.2)$$

Taking the above and (2.2.1) into account, we have

Lemma 2.2.7. If $g : (0, \infty) \rightarrow [0, \infty]$ is nonincreasing, then $(g_{+0})^0 = g^0 = (g_{-0})^0$.

Proof. Inequalities $(g_{+0})^0 \leq g^0 \leq (g_{-0})^0$ are consequences of the inclusions

$$\{\lambda > 0 : g(\lambda - 0) \leq \lambda\} \subset \{\lambda > 0 : g(\lambda) \leq \lambda\} \subset \{\lambda > 0 : g(\lambda + 0) \leq \lambda\},$$

which follow from (2.2.2). Now, we may assume that $g \neq \infty$. Then $g_{+0} \neq \infty$ and $g_{-0} \neq \infty$, which ensures that g^0, $(g_{+0})^0$, and $(g_{-0})^0$ are finite.

Let us show that $g^0 \leq (g_{+0})^0$. Given $\lambda > (g_{+0})^0$, choose μ such that $(g_{+0})^0 < \mu < \lambda$. By (2.2.2) and definition of $(g_{+0})^0$, we get

$$g(\lambda) \leq g(\mu + 0) = g_{+0}(\mu) \leq \mu < \lambda.$$

Hence $g^0 \leq \lambda$. Since $\lambda > (g_{+0})^0$ is arbitrary, we find $g^0 \leq (g_{+0})^0$.

In order to show that $(g_{-0})^0 \leq g^0$, we let $\lambda > g^0$. Then, for any $\mu > 0$ such that $g^0 < \mu < \lambda$, inequalities (2.2.2) and definition of g^0 imply

$$(g_{-0})(\lambda) = g(\lambda - 0) \leq g(\mu) \leq \mu < \lambda.$$

Therefore $(g_{-0})^0 \leq \lambda$. Letting $\lambda \rightarrow g^0$, we get $(g_{-0})^0 \leq g^0$. □

Putting, for a (pseudo)modular w on X, $g = w_{x,y}$ in Lemma 2.2.7 and noting that $g_{\pm0} = (w_{\pm0})^{x,y}$ and $d_{w_{\pm0}}^0(x, y) = (g_{\pm0})^0$, we have

Corollary 2.2.8. $d_{w_{+0}}^0(x, y) = d_{w_{-0}}^0(x, y) = d_{w}^0(x, y)$ for all $x, y \in X$.

In particular, if w and w are (pseudo)modulars on X such that $w_{+0} = W_{+0}$ or $w_{-0} = W_{-0}$, then $d_{w}^0 = d_{w}^0$ on $X \times X$.

We conclude that the right and left regularizations of a (pseudo)modular w on X provide no new modular spaces as compared to X^*_w, X^0_w and X^fin_w (cf. Sect. 2.1) and no new (pseudo)metrics as compared to d_w^0.

Yet, in Sect. 2.5, we establish the existence of continuum many (equivalent) metrics on the modular space X^*_w.

This section is continued by studying the basic metric $d^0_w(x, y)$ at the level of the map $g \mapsto g^0$, applied later to nonincreasing functions $g = w_{x,y}$. Our next lemma clarifies the definition of g^0 and Lemma 2.2.7 and, along with (2.2.1), gives a method for evaluating g^0 in terms of solutions of certain inequalities.
Lemma 2.2.9 (inequalities for g^0). Let $g : (0, \infty) \to [0, \infty]$ be a nonincreasing function with $0 < g^0 < \infty$ (i.e., $g \not\equiv 0$ and $g \not\equiv \infty$), and $\lambda > 0$. We have:

(a) $g^0 < \lambda$ if and only if $g(\lambda - 0) < \lambda$;
(b) $g^0 > \lambda$ if and only if $g(\lambda + 0) > \lambda$;
(c) $g^0 = \lambda$ if and only if $g(\lambda + 0) \leq \lambda \leq g(\lambda - 0)$.

Proof. (a)\implies Suppose $g^0 < \lambda$. Given λ_1 and λ_2 such that $g^0 < \lambda_1 < \lambda_2 < \lambda$, by the monotonicity of g, $g(\lambda_2) \leq g(\lambda_1)$, and the definition of g^0 implies $g(\lambda_1) \leq \lambda_1$. Hence $g(\lambda_2) \leq \lambda_1$. Passing to the limits as $\lambda_1 \to g^0$ and $\lambda_2 \to \lambda$, we get $g(\lambda - 0) \leq g^0$, where $g^0 < \lambda$, and so, $g(\lambda - 0) < \lambda$.

(a)\iff By the assumption, $g(\lambda - 0) < \lambda$, where $g(\lambda - 0) = \lim_{\mu \to \lambda - 0} g(\mu)$ and $\lambda = \lim_{\mu \to \lambda - 0} \mu$. So, there exists μ_0 with $0 < \mu_0 < \lambda$ such that $g(\mu) < \mu$ for all μ with $\mu_0 \leq \mu < \lambda$. By the definition of g^0, we find $g^0 \leq \mu$, which implies $g^0 < \lambda$.

(b)\implies Let $g^0 > \lambda$. For any λ_1 and λ_2 such that $g^0 > \lambda_2 > \lambda_1 > \lambda$, we have $g(\lambda_1) \geq g(\lambda_2) > \lambda_2$, where the last inequality follows from the definition of g^0: if, on the contrary, $g(\lambda_2) \leq \lambda_2$, then $g^0 \leq \lambda_2$, which contradicts the inequality $g^0 > \lambda_2$. Therefore $g(\lambda_1) > \lambda_2$. Letting $\lambda_2 \to g^0$ and $\lambda_1 \to \lambda$, we find $g(\lambda + 0) \geq g^0 > \lambda$.

(b)\iff Since $\lim_{\mu \to \lambda + 0} g(\mu) = g(\lambda + 0) > \lambda = \lim_{\mu \to \lambda + 0} \mu$, there exists $\mu_0 > \lambda$ such that $g(\mu) > \mu$ for all μ with $\lambda < \mu \leq \mu_0$. It follows that $g^0 \geq \mu$ (otherwise, if $g^0 < \mu$, then the definition of g^0 implies $g(\mu) \leq \mu$, which is a contradiction). Since $\mu > \lambda$, we get $g^0 > \lambda$.

(c) The statement in (a) is equivalent to the following:

$$g^0 \geq \lambda \text{ if and only if } g(\lambda - 0) \geq \lambda,$$

(2.2.3)

and the one in (b) is equivalent to the assertion:

$$g^0 \leq \lambda \text{ if and only if } g(\lambda + 0) \leq \lambda.$$

(2.2.4)

From these two observations, (c) follows. \square

Remark 2.2.10. (a) Actually, a little bit more is shown in the proof of Lemma 2.2.9:

$g^0 < \lambda \implies g(\lambda - 0) \leq g^0 < \lambda$ in (a), and $g^0 > \lambda \implies g(\lambda + 0) \geq g^0 > \lambda$ in (b).

(b) We have $g^0 = \inf\{\lambda > 0 : g(\lambda) < \lambda\} \equiv g''$ (cf. (2.2.1) and Lemma 2.2.4).

In fact, this is clear if $g \equiv 0$ or $g \equiv \infty$, so let $0 < g^0 < \infty$. Since $\{\lambda > 0 : g(\lambda) < \lambda\} \subseteq \{\lambda > 0 : g(\lambda) \leq \lambda\}$, we get $g^0 \leq g''$. Now, given $\lambda > g^0$, inequalities (2.2.2) and Lemma 2.2.9(a) imply $g(\lambda) \leq g(\lambda - 0) < \lambda$, and so, $g'' \leq \lambda$, which yields $g'' \leq g^0$.

(c) Assuming one-sided continuity of g on $(0, \infty)$, in view of (2.2.4) and (2.2.3), we get some useful particular cases of Lemma 2.2.9:

$$g^0 \leq \lambda \iff g(\lambda) \leq \lambda, \text{ provided } g \text{ is continuous from the right};$$
$$g^0 < \lambda \iff g(\lambda) < \lambda, \text{ provided } g \text{ is continuous from the left};$$
$$g^0 = \lambda \iff g(\lambda) = \lambda \text{ (i.e., } \lambda \text{ is a fixed point of } g), \text{ provided } g \text{ is continuous}.$$
To illustrate Lemma 2.2.9, consider \(g : (0, \infty) \to (0, \infty) \) defined by:
\[
g(\lambda) = \begin{cases}
3 & \text{if } 0 < \lambda < 1, \\
2 & \text{if } \lambda = 1, \\
0 & \text{if } \lambda > 1.
\end{cases}
\]
Clearly, \(g \) is nonincreasing and \(g^0 = \inf(1, \infty) = 1 \).

Inequalities in Lemma 2.2.9(c) are of the form:
\[
g(1 + 0) = 0 < g^0 = 1 < 3 = g(1 - 0).
\]
Although strict inequality \(g(1 - 0) = 3 > 1 = \lambda \) holds in (2.2.3), we have \(g^0 = \lambda = 1 \).
Similarly, \(g(1 + 0) = 0 < 1 = \lambda \) in (2.2.4) and \(g^0 = 1 = \lambda \).

Setting \(g = w^{x,y} \) in Lemma 2.2.9 (for \(x, y \in X_w^* \)), we obtain the following important result for modulars \(w \) on \(X \) (cf. also Remark 2.2.10(a), (c)).

Theorem 2.2.11. Let \(w \) be a (pseudo)modular on the set \(X \), \(X_w^* \) be the modular space, \(\lambda > 0 \), and \(x, y \in X_w^* \). Then we have:

(a) condition \(d_w^0(x, y) < \lambda \) implies \(w_{\lambda-0}(x, y) \leq d_w^0(x, y) < \lambda \), and conversely,
condition \(w_{\lambda-0}(x, y) < \lambda \) implies \(d_w^0(x, y) < \lambda \);
(b) inequality \(d_w^0(x, y) > \lambda \) implies \(w_{\lambda+0}(x, y) \geq d_w^0(x, y) > \lambda \), and conversely,
inequality \(w_{\lambda+0}(x, y) > \lambda \) implies \(d_w^0(x, y) > \lambda \);
(c) equality \(d_w^0(x, y) = \lambda \) is equivalent to \(w_{\lambda+0}(x, y) \leq \lambda \leq w_{\lambda-0}(x, y) \).

Under the continuity assumptions on \(w \), additional equivalences hold:

(d) if \(w \) is continuous from the right, then \(d_w^0(x, y) \leq \lambda \iff w_{\lambda}(x, y) \leq \lambda \);
(e) if \(w \) is continuous from the left, then \(d_w^0(x, y) < \lambda \iff w_{\lambda}(x, y) < \lambda \);
(f) if \(w \) is continuous on \((0, \infty)\), then \(d_w^0(x, y) = \lambda \iff w_{\lambda}(x, y) = \lambda \).

The conclusions of Theorem 2.2.11 are sharp (cf. Remark 2.2.10(d) and (1.3.1)).

Example 2.2.12. Let \(w \) be given by (1.3.2) with \(h(\lambda) = \lambda^p \) \((p > 0)\). Since \(w \) is continuous on \((0, \infty)\), by virtue of Theorem 2.2.11(f), the value \(\lambda = d_w^0(x, y) \) with \(x \neq y \) satisfies the equation \(w_\lambda(x, y) = \lambda \), that is,
\[
\lambda^{p+1} + d(x, y)\lambda - d(x, y) = 0. \tag{2.2.5}
\]
If \(p = 1 \), then solving the corresponding quadratic equation, we get
\[
d_w^0(x, y) = \frac{\sqrt{(d(x, y))^2 + 4d(x, y) - d(x, y)}}{2}. \tag{2.2.6}
\]
For \(p = 2 \), the solution \(\lambda \) of the corresponding cubic equation (2.2.5) is given by Cardano’s formula:
\[
d_w^0(x, y) = \frac{3}{2} \sqrt[3]{\frac{a}{2}} + \sqrt{\left(\frac{a}{2}\right)^2 + \left(\frac{a}{3}\right)^3} - \frac{3}{2} \sqrt{-\left(\frac{a}{2}\right)^2 + \left(\frac{a}{3}\right)^3}, \tag{2.2.7}
\]
where \(a = d(x, y) \), and the square and cube roots of positive numbers have uniquely determined positive values. The solution by radicals of the fourth-order equation (for \(p = 3 \)) can be obtained by Ferrari’s method, and is left to the interested reader.

Note that, for any function \(h \) from (1.3.2), we have \(d^0_w(x, y) < 1 \).

In fact, if \(h \) is continuous on \((0, \infty) \), equality \(w_\lambda(x, y) = \lambda \) is of the form \(f(\lambda) = 0 \), where \(f(\lambda) = \lambda h(\lambda) - (1 - \lambda) d(x, y) \), and \(\lambda h(\lambda) \to 0 \) as \(\lambda \to +0 \). Setting \(\lambda h(\lambda) = 0 \) if \(\lambda = 0 \), we find that \(f \) is continuous on \([0, \infty) \), \(f(0) = -d(x, y) < 0 \) (if \(x \neq y \)), and \(f(1) = h(1) > 0 \). By the Intermediate Value Theorem, \(f(\lambda) = 0 \) for some \(0 < \lambda < 1 \), and so, \(d^0_w(x, y) = \lambda < 1 \).

In the general case, we first show that if there exists \(\mu > 0 \) such that

\[
 w_{\lambda-0}(x, y) < \mu \quad \text{for all } \lambda > 0 \text{ and } x, y \in X, \text{ then } d^0_w(x, y) < \mu \quad \text{for all } x, y \in X.
\]

Since \(w_\lambda(x, y) \leq w_{\lambda-0}(x, y) < \mu \), and this holds for \(\lambda = \mu \), we find \(d^0_w(x, y) \leq \mu \). If we assume that \(d^0_w(x, y) = \mu \) (for some \(x \neq y \)), then, by Theorem 2.2.11(b), we have \(w_\lambda(x, y) \geq w_{\lambda+0}(x, y) > \lambda \) for all \(0 < \lambda < d^0_w(x, y) = \mu \), and so, \(w_{\lambda-0}(x, y) \) is equal to \(\lim_{\lambda \to \mu-0} w_\lambda(x, y) \geq \mu \), which contradicts the assumption. It remains to note that \(w_{\lambda-0}(x, y) < 1 = \mu \) for our modular \(w \) from (1.3.2).

One more example of a (pseudo)metric from Theorem 2.2.1 is given by the quantity \(d^0_w \) on the power set \(\mathcal{P}(X) \) of \(X \), where \(W \) is the Hausdorff pseudomodular on \(\mathcal{P}(X) \) induced by a (pseudo)modular \(w \) on \(X \). There are two ways of obtaining a distance function on \(\mathcal{P}(X) \) starting from \(w \) on \(X \), namely

\[
 w \text{ on } X \xrightarrow{\text{Theorem 2.2.1}} d^0_w \text{ on } X \xrightarrow{\text{Appendix A.1}} D_{d^0_w} \text{ on } \mathcal{P}(X)
\]

and

\[
 w \text{ on } X \xrightarrow{\text{Section 1.3.5}} W \text{ on } \mathcal{P}(X) \xrightarrow{\text{Theorem 2.2.1}} d^0_w \text{ on } \mathcal{P}(X).
\]

Fortunately, the resulting distance functions \(D_{d^0_w} \) and \(d^0_w \) coincide on \(\mathcal{P}(X) \) as the following theorem asserts.

Theorem 2.2.13. Let \(w \) be a (pseudo)modular on \(X \), \(D = D_{d^0_w} \) be the Hausdorff distance on \(\mathcal{P}(X) \) generated by the extended (pseudo)metric \(d^0_w \) on \(X \), and \(W \) be the Hausdorff pseudomodular on \(\mathcal{P}(X) \) induced by \(w \). Then

\[
 d^0_w(A, B) = D(A, B) \quad \text{for all } A, B \in \mathcal{P}(X).
\]

Proof. Since \(d^0_w(\emptyset, \emptyset) = 0 = D(\emptyset, \emptyset) \), and \(d^0_w(A, \emptyset) = \infty = D(A, \emptyset) \) for all \(A \neq \emptyset \), we may assume that \(A \neq \emptyset \) and \(B \neq \emptyset \).

\[
 (\geq) \quad \text{Suppose } d^0_w(A, B) = \inf \{ \lambda > 0 : W_\lambda(A, B) \leq \lambda \} \text{ is finite, and } \lambda > d^0_w(A, B).
\]

Applying (1.2.4) and Theorem 2.2.11(a) (cf. also Remark 2.2.10(b)), we get
2.3 The Basic Metric in the Convex Case

\[W_\lambda(A, B) = \max\{E_\lambda(A, B), E_\lambda(B, A)\} < \lambda, \]

and so, \(E_\lambda(A, B) < \lambda \) and \(E_\lambda(B, A) < \lambda \). By (1.3.12), we have \(\inf_{y \in B} w_\lambda(x, y) < \lambda \) for all \(x \in A \). So, for each \(x \in A \) there exists \(y_x \in B \) (depending also on \(\lambda \)) such that \(w_\lambda(x, y_x) < \lambda \). The definition of \(d_\lambda^0 \) gives \(d_\lambda^0(x, y_x) \leq \lambda \). Since

\[\inf_{y \in B} d_\lambda^0(x, y) \leq d_\lambda^0(x, y_x) \leq \lambda \quad \text{for all } x \in A, \]

we get \(e(A, B) = \sup_{x \in A} \inf_{y \in B} d_\lambda^0(x, y) \leq \lambda \). Similarly, \(E_\lambda(B, A) < \lambda \) implies inequality \(e(B, A) \leq \lambda \). Therefore \(D(A, B) = \max\{e(A, B), e(B, A)\} \leq \lambda \) for all \(\lambda > d_\lambda^0(A, B) \), and so, \(D(A, B) \leq d_\lambda^0(A, B) < \infty \).

\((\leq) \) Let \(D(A, B) < \infty \), and \(\lambda > D(A, B) \) be arbitrary. Then \(\lambda > e(A, B) \) as well as \(\lambda > e(B, A) \). Inequality \(\lambda > e(A, B) = \sup_{x \in A} \inf_{y \in B} d_\lambda^0(x, y) \) implies that, given \(x \in A \), \(\lambda > \inf_{y \in B} d_\lambda^0(x, y) \). So, for every \(x \in A \) there exists \(y_x \in B \) (also depending on \(\lambda \)) such that \(\lambda > d_\lambda^0(x, y_x) \). By the definition of \(d_\lambda^0 \), we have \(w_\lambda(x, y_x) \leq \lambda \). Since

\[\inf_{y \in B} w_\lambda(x, y) \leq w_\lambda(x, y_x) \leq \lambda \quad \text{for all } x \in A, \]

we find \(E_\lambda(A, B) = \sup_{x \in A} \inf_{y \in B} w_\lambda(x, y) \leq \lambda \). Similarly, inequality \(\lambda > e(B, A) \) implies \(E_\lambda(B, A) \leq \lambda \). Hence \(W_\lambda(A, B) = \max\{E_\lambda(A, B), E_\lambda(B, A)\} \leq \lambda \). The definition of \(d_\lambda^0 \) yields \(d_\lambda^0(A, B) \leq \lambda \) for all \(\lambda > D(A, B) \), and so, \(d_\lambda^0(A, B) \leq D(A, B) < \infty \).

\[\square \]

2.3 The Basic Metric in the Convex Case

Now we treat the case when a (pseudo)modular \(w \) on \(X \) is convex: \(w \) gives rise to an additional (pseudo)metric on the modular space \(X_w^* \) to be studied below.

We make use of the following observation. As we have seen in Remark 1.2.2(d), the convexity of a (pseudo)modular \(w \) on \(X \) is equivalent to the fact that the function \(\hat{w}_\lambda(x, y) = \lambda w_\lambda(x, y) \) is a (pseudo)modular on \(X \). On the other hand, if a function \(\hat{w} \) on \((0, \infty) \times X \times X \) is initially given, then we have: \(\hat{w} \) is a (pseudo)modular on \(X \) if and only if \(\hat{w}_\lambda(x, y) = \hat{w}_\lambda(x, y)/\lambda \) is a convex (pseudo)modular on \(X \).

From Sect. 2.1, we find

\[X_w^0 \subset X_w = X_w^* \quad \text{and} \quad X_w^{\text{fin}} = X_w^{\text{fin}} \subset X_w^* = X_w^*. \] \hspace{1cm} (2.3.1)

By Theorem 2.2.1, \(\hat{w} \) generates a (pseudo)metric on \(X_w^* \) of the form

\[d_{\hat{w}}^0(x, y) = \inf\{\lambda > 0 : \hat{w}_\lambda(x, y) \leq \lambda\} = \inf\{\lambda > 0 : w_\lambda(x, y) \leq 1\}. \] \hspace{1cm} (2.3.2)

The last expression is given in terms of \(w \) and is denoted by \(d_w^*(x, y) \).
Properties of d_w^* are gathered in the following theorem, where Theorem 2.2.1 and Corollary 2.2.6 are applied to $\hat{w}_\lambda(x, y) = \lambda w_\lambda(x, y)$ and expressed via w.

Theorem 2.3.1. Let w be a convex (pseudo)modular on X. Then

$$d_w^*(x, y) \equiv \inf \{ \lambda > 0 : w_\lambda(x, y) \leq 1 \} = \inf_{\lambda > 0} \max \{ \lambda, \lambda w_\lambda(x, y) \}, \quad x, y \in X,$$

is an extended (pseudo)metric on X (with $d_w^*(x, y) < \infty \iff x \sim y$), whose restriction to the modular space X^* is a (pseudo)metric on X^*.

Furthermore, d_w^0 and d_w^* are nonlinearly equivalent in the following sense: given $x, y \in X^*$, we have

$$\min\{d_w^*(x, y), \sqrt{d_w^*(x, y)}\} \leq d_w^0(x, y) \leq \max\{d_w^*(x, y), \sqrt{d_w^*(x, y)}\},$$

(2.3.4)

or, equivalently (written in a different way),

$$d_w^0(x, y) \cdot \min\{1, d_w^0(x, y)\} \leq d_w^*(x, y) \leq d_w^0(x, y) \cdot \max\{1, d_w^0(x, y)\}.$$

(2.3.5)

Only the second part of Theorem 2.3.1 is to be verified. For this, we need some precise inequalities for $d_w^* = d_w^0$, which are reformulated from Theorem 2.2.11 (applied to \hat{w}) in terms of w and stated, for ease of reference, as

Theorem 2.3.2. Let w be a convex (pseudo)modular on X, $\lambda > 0$, and $x, y \in X^*$. Then we have:

(a) $d_w^*(x, y) < \lambda$ implies $w_{\lambda-0}(x, y) \leq d_w^*(x, y)/\lambda < 1$, and conversely,

$$w_{\lambda-0}(x, y) < 1 \implies d_w^*(x, y) < \lambda;$$

(b) $d_w^*(x, y) > \lambda$ implies $w_{\lambda+0}(x, y) \geq d_w^*(x, y)/\lambda > 1$, and conversely,

$$w_{\lambda+0}(x, y) > 1 \implies d_w^*(x, y) > \lambda;$$

(c) $d_w^*(x, y) = \lambda$ is equivalent to $w_{\lambda+0}(x, y) \leq 1 \leq w_{\lambda-0}(x, y)$.

In addition, under the continuity assumptions on w, we get:

(d) $d_w^*(x, y) \leq \lambda \iff w_{\lambda}(x, y) \leq 1$, provided w is continuous from the right;

(e) $d_w^*(x, y) < \lambda \iff w_\lambda(x, y) < 1$, provided w is continuous from the left;

(f) $d_w^*(x, y) = \lambda \iff w_\lambda(x, y) = 1$, provided w is continuous on $(0, \infty)$.

Proof (of Theorem 2.3.1 (second part)). In steps 1 and 2, we show that inequalities $d_w^0(x, y) < 1$ and $d_w^*(x, y) < 1$ are equivalent, and if one of them holds, then

$$d_w^*(x, y) \leq d_w^0(x, y) \leq \sqrt{d_w^*(x, y)}.$$

(2.3.6)

Since $d_w^*(x, y) < 1$ implies $d_w^*(x, y) \leq \sqrt{d_w^*(x, y)}$, inequality (2.3.6) proves (2.3.4).

1. Suppose $d_w^0(x, y) < 1$. Let us show that $d_w^*(x, y) \leq d_w^0(x, y)$ (and so, $d_w^*(x, y) < 1$).

In fact, for any number λ such that $d_w^0(x, y) < \lambda < 1$, the definition of d_w^0 gives
2.3 The Basic Metric in the Convex Case

2. Assume that $d^*_w(x, y) < 1$. Let us prove that $d^*_w(x, y) \leq \sqrt{d^*_w(x, y)}$, which is the right-hand side inequality in (2.3.6) (and so, $d^0_w(x, y) < 1$). Since $d^*_w(x, y) \leq \sqrt{d^*_w(x, y)} < 1$, for any λ such that $\sqrt{d^*_w(x, y)} < \lambda < 1$, inequalities (1.2.4) and, by virtue of convexity of w, Theorem 2.3.2(a) imply

$$w_\lambda(x, y) \leq w_{\lambda-0}(x, y) \leq \frac{d^*_w(x, y)}{\lambda} < \frac{\lambda^2}{\lambda} = \lambda.$$

By the definition of d^*_w, $d^*_w(x, y) \leq \lambda$. Letting λ tend to $\sqrt{d^*_w(x, y)}$, we obtain the desired inequality.

As a consequence of steps 1 and 2, inequalities $d^0_w(x, y) \geq 1$ and $d^*_w(x, y) \geq 1$ are equivalent, as well. In steps 3 and 4, we show that if one of these inequalities holds, then

$$\sqrt{d^*_w(x, y)} \leq d^0_w(x, y) \leq d^*_w(x, y). \quad (2.3.7)$$

Since $d^*_w(x, y) \geq 1$ implies $d^*_w(x, y) \geq \sqrt{d^*_w(x, y)}$, (2.3.7) establishes (2.3.4).

3. Inequality $d^0_w(x, y) \geq 1$ implies $d^0_w(x, y) \leq d^*_w(x, y)$: in fact, by the definition of d^*_w, $w_\lambda(x, y) \leq 1$ for all $\lambda > d^*_w(x, y)$, and since $\lambda > 1$, $w_\lambda(x, y) < \lambda$. From the definition of d^0_w, we get $d^0_w(x, y) \leq \lambda$. The assertion follows thanks to the arbitrariness of $\lambda > d^*_w(x, y)$.

4. Suppose $d^0_w(x, y) \geq 1$, and let us show that $\sqrt{d^*_w(x, y)} \leq d^0_w(x, y)$, which is the left-hand side inequality in (2.3.7). Given $\lambda > d^0_w(x, y)$, we have $w_\lambda(x, y) \leq \lambda$, and since $\lambda > 1$, $\lambda^2 > \lambda$. The convexity of w and (1.2.5) imply

$$w_{\lambda^2}(x, y) \leq \frac{\lambda}{\lambda^2} w_\lambda(x, y) \leq \frac{\lambda}{\lambda^2} \cdot \lambda = 1,$$

whence $d^*_w(x, y) \leq \lambda^2$. Letting λ go to $d^0_w(x, y)$, we get $d^*_w(x, y) \leq (d^0_w(x, y))^2$.

\[\square\]

Remark 2.3.3. 1. If w is nonconvex, the quantity $d^*_w(x, y) \in [0, \infty]$ from (2.3.3) has only two properties: $d^*_w(x, x) = 0$, and $d^*_w(x, y) = d^*_w(y, x)$. It follows from (2) in this Remark that $d^*_w(x, y) = 0 \nRightarrow x = y$, and from (4)—that the triangle inequality may not hold for d^*_w.

2. The convexity of w is essential for inequalities (2.3.4) and (2.3.5): modular (1.3.2) is nonconvex, and d^0_w is a well-defined metric on X (e.g., (2.2.6) and (2.2.7)), but, since $w_\lambda(x, y) < 1$ for all $\lambda > 0$, we have $d^*_w(x, y) = 0$ for all $x, y \in X$ (and, in particular, d^*_w is not a metric on X).

3. In the proof of Theorem 2.3.1, the implications in steps 1 and 3, which are of the form $d^0_w(x, y) < 1 \Rightarrow d^*_w(x, y) \leq d^0_w(x, y)$, and $d^*_w(x, y) \geq 1 \Rightarrow d^0_w(x, y) \leq d^*_w(x, y)$, do not rely on the convexity of w and are valid for those (pseudo)modulurs w, for which the quantity $d^*_w(x, y)$ is well-defined. The example in (2) above is consistent with the former implication.
4. For the modular $w_{\lambda}(x, y) = d(x, y)/\lambda^p$ ($p > 0$) from Example 2.2.2(1), we have $d^0_w(x, y) = (d(x, y))^{1/(p+1)}$ and $d^*_w(x, y) = (d(x, y))^{1/p}$, where we note that d^*_w is a metric on X if and only if w is convex, i.e., $p \geq 1$. So, for $p \geq 1$, setting $a = d(x, y)$, inequalities (2.3.6) and (2.3.7) assume the form:

$$a^p \leq a^{p+1} \leq a^1 \leq a^p$$

if $0 \leq a < 1$, and $a^p \leq a^{p+1} \leq a^1$ if $a \geq 1$.

5. Inequalities (2.3.4) are the best possible: see Example 2.3.5(1).

Remark 2.3.4. If ρ is a classical convex modular on a real linear space X (cf. Sect. 1.3.3 and Remark 2.2.3), then the modular space X_{ρ} coincides with the set $X_{\rho}^* = \{x \in X : \rho(\alpha x) < \infty \text{ for some } \alpha > 0\}$, and the functional $\|x\|_{\rho} = \inf \{\varepsilon > 0 : \rho(x/\varepsilon) \leq 1\}$ ($x \in X_{\rho}^*$) is a norm on $X_{\rho} = X_{\rho}^*$, which is nonlinearly equivalent to the F-norm $\|x\|_{\rho}$ in the same sense as in Theorem 2.3.1. Moreover, under the assumptions of Proposition 1.3.5, where X is a linear space and $\rho(x) = w_1(x, 0)$, we have: $X_{\rho}^* = X_w^*(0) = X_{\rho}$ is a linear subspace of X, and the functional $\|x\|_{\rho} = d^*_w(x, 0), x \in X_{\rho}^*$, is a norm on X_{ρ}^*.

2. Similar to Corollary 2.2.8, if w is convex, then $d^*_{w+0} = d^*_w = d^*_w$ on $X \times X$. In fact, $(\hat{w}^\lambda)_{\lambda}(x, y) \equiv \hat{w}_\lambda(x, y) = \lambda w_\lambda(x, y)$ is also a (pseudo)modular on X, and $(w_{\pm0})^\lambda = (\hat{w}_{\pm0} = (w^\lambda)^{\pm0}, which can be seen as follows. Given $\lambda > 0$ and $x, y \in X, (1.2.2)$ and (1.2.3) imply

$$(w_{\pm0})^\lambda_{\lambda}(x, y) = \lambda (w_{\pm0})_{\lambda}(x, y) = \lambda \lim_{\mu \to \lambda_{\pm0}} \mu w_\mu(x, y)$$

$$= \lim_{\mu \to \lambda_{\pm0}} (w^\lambda_{\mu}(x, y) = (w^\lambda)^{\pm0}(x, y) = ((w^\lambda)^{\pm0})_{\hat{\lambda}}(x, y).$$

By virtue of (2.3.3) and (2.3.2), $d^*_w = d^*_w$, and Corollary 2.2.8 yields

$$d^*_{w_{\pm0}} = d^0_{(w_{\pm0})^\lambda} = d^0_{(w^\lambda)^{\pm0}} = d^*_{w_{\pm0}} = d^*_w.$$

Example 2.3.5. Consider the modular $w_\lambda(x, y) = \varphi(d(x, y)/\lambda)$ from (1.3.5), where the function $\varphi : [0, \infty) \to [0, \infty]$ is nondecreasing and such that $\varphi(0) = 0, \varphi \neq \infty, (X, d)$ is a metric space, $x, y \in X^*_w = X$, and $\lambda > 0$.

1. Let $\varphi(u) = u^p$ ($p > 0$). Then w is strict, convex if $p \geq 1$, and nonconvex if $0 < p < 1$. For any $p > 0$, we have

$$d^0_w(x, y) = (d(x, y))^{p/(p+1)} \text{ and } d^*_w(x, y) = d(x, y).$$

To show that inequalities (2.3.4) are the best possible, we note that if $p = 1$, then $d^0_w(x, y) = \sqrt{d^*_w(x, y)}$, and if $p > 1$, then (w is convex and) we find

$$d^0_w(x, y) = (d^*_w(x, y))^{p/(p+1)} \to d^*_w(x, y) \text{ as } p \to \infty.$$
2. Let \(w \) be the \((a, 0)\)-modular from (1.3.9). If \(a = \infty \), then \(w \) is nonstrict and convex, and we have: \(d_w^0(x, y) = d_w^a(x, y) = d(x, y) \). Now, if \(a > 0 \), then \(w \) is nonstrict and nonconvex, and we have: \(d_w^0(x, y) = \min\{a, d(x, y)\} \), \(d_w^a(x, y) = 0 \) if \(a \leq 1 \), and \(d_w^a(x, y) = d(x, y) \) if \(a > 1 \).

3. If \(\varphi(u) = u \) for \(0 \leq u \leq 1 \), and \(\varphi(u) = 1 \) for \(u > 1 \), then the modular

\[
w_\lambda(x, y) = \begin{cases} 1 & \text{if } 0 < \lambda < d(x, y), \\
\frac{d(x, y)}{\lambda} & \text{if } \lambda \geq d(x, y),
\end{cases}
\]

is strict and nonconvex, and \(d_w^0(x, y) = \min\{1, \sqrt{d(x, y)}\} \).

4. Let \(\varphi(u) = 0 \) for \(0 \leq u \leq 1 \), and \(\varphi(u) = u - 1 \) for \(u > 1 \). We have:

\[
w_\lambda(x, y) = \frac{d(x, y)}{\lambda} - 1 \quad \text{if } 0 < \lambda < d(x, y), \quad \text{and} \quad w_\lambda(x, y) = 0 \quad \text{if } \lambda \geq d(x, y),
\]

is nonstrict and convex, and (note that \(d_w^0(x, y) < d(x, y) \) if \(x \neq y \))

\[
d_w^0(x, y) = \sqrt{1 + 4d(x, y)} - 1 \quad \text{and} \quad d_w^a(x, y) = \frac{d(x, y)}{2}.
\]

5. Suppose \(\varphi(0) = 0, \varphi(u) = 1 \) if \(0 < u < 1 \), and \(\varphi(u) = u \) if \(u \geq 1 \). Given \(\lambda > 0 \) and \(x, y \in X \), we have: \(w_\lambda(x, y) = 0 \) if \(x = y \), and if \(x \neq y \),

\[
w_\lambda(x, y) = \frac{d(x, y)}{\lambda} \quad \text{if } 0 < \lambda \leq d(x, y), \quad \text{and} \quad w_\lambda(x, y) = 1 \quad \text{if } \lambda > d(x, y).
\]

Then the modular \(w \) is strict and nonconvex, \(d_w^0(x, y) = \max\{1, \sqrt{d(x, y)}\} \) if \(x \neq y \), and \(d_w^0(x, y) = 0 \) if \(x = y \).

6. Suppose \(\varphi \) is given by: \(\varphi(u) = u \) if \(0 \leq u \leq 1 \), \(\varphi(u) = 1 \) if \(1 < u < 2 \), and \(\varphi(u) = u - 1 \) if \(u \geq 2 \). The corresponding modular \(w \) is strict and nonconvex, and we have: \(d_w^0(x, y) = \sqrt{d(x, y)} \) if \(d(x, y) \leq 1 \), \(d_w^0(x, y) = 1 \) if \(1 < d(x, y) < 2 \), and \(d_w^0(x, y) = \frac{1}{2}(\sqrt{1 + 4d(x, y)} - 1) \) if \(d(x, y) \geq 2 \).

2.4 Modulares and Metrics on Sequence Spaces

Let \((M, d)\) be a metric space, \(X = M^\mathbb{N}\)—the set of all sequences \(x = \{x_n\}\) from \(M\), and \(x^o = \{x_n^o\} \subseteq M\)—a given sequence (the center of a modular space). In this section, we study two special modulares defined on \(X\).

1. The modular \(w \) from (1.3.10) with \(\varphi(u) = u^p (p > 0) \) and \(h(\lambda) = \lambda^q \) \((q \geq 1)\) is strict and continuous, and it is convex if \(p \geq 1 \). The modular spaces (around \(x^o\)) are given by
$$X_w^* = X_w^0 = X_w^{\text{fin}} = \left\{ x = \{x_n\} \in X : \sum_{n=1}^{\infty} (d(x_n, x_n^0))^p < \infty \right\}$$

(if \(M = \mathbb{R} \) with metric \(d(x,y) = |x-y| \) and \(x^0 = 0 \) \(\{0\}_{n=1}^{\infty} \), then \(X_w^*(0) \) is the usual space \(\ell_p \) of all real \(p \)-summable sequences).

Let \(H(\lambda) = \lambda (h(\lambda))^p = \lambda^{pq+1} \). The metric \(d_w^0 \) on \(X_w^* \) is of the form:

$$d_w^0(x,y) = H^{-1}\left(\sum_{n=1}^{\infty} (d(x_n, y_n))^p \right) = \left(\sum_{n=1}^{\infty} (d(x_n, y_n))^p \right)^{1/(pq+1)}$$

where \(H^{-1}(\mu) = \mu^{1/(pq+1)} \) is the inverse function of \(H \) on \([0, \infty)\).

If \(p \geq 1 \), then \(w \) is convex, and we also have metric \(d_w^* \) on \(X_w^* \) of the form:

$$d_w^*(x,y) = h^{-1}\left(\left[\sum_{n=1}^{\infty} (d(x_n, y_n))^p \right]^{1/p} \right) = \left(\sum_{n=1}^{\infty} (d(x_n, y_n))^p \right)^{1/pq}$$

where \(h^{-1} : [0, \infty) \to [0, \infty) \) is the inverse function of \(h \) (see Example 1.3.10, and Appendix A.1 concerning general superadditive functions \(h \)).

2. Given \(\lambda > 0 \) and \(x = \{x_n\}, y = \{y_n\} \in X = M^\mathbb{N} \), we set

$$w_\lambda(x,y) = \sup_{n \in \mathbb{N}} \left(\frac{d(x_n, y_n)}{\lambda} \right)^{1/n}.$$ \hspace{1cm} (2.4.1)

Proposition 2.4.1. \(w = \{w_\lambda\}_{\lambda > 0} \) is a strict nonconvex continuous modular on \(X \).

Proof. Axioms (i), (ii), and (iii) are clear, and axiom (iii) follows from inequalities (1.3.11) with \(\varphi(u) = u^{1/n} \) and \(h(\lambda) = \lambda \).

In order to see that \(w \) is nonconvex, we show that \(X_w^0(x^0) \neq X_w^*(x^0) \) for some \(x^0 \in X \) (cf. Sect. 2.1). Choose any \(x^0 \in M \) and \(x \in M, x \neq x^0 \), and let \(x^0 = \{x_n^0\}_{n=1}^{\infty} \) and \(x = \{x_n\}_{n=1}^{\infty} \) also denote the corresponding constant sequences from \(X \). Given \(\lambda > d(x,x^0) > 0 \), we find

$$w_\lambda(x,x^0) = \sup_{n \in \mathbb{N}} \left(\frac{d(x_n, x_n^0)}{\lambda} \right)^{1/n} = \lim_{n \to \infty} \left(\frac{d(x_n, x_n^0)}{\lambda} \right)^{1/n} = 1,$$

and so, \(x \in X_w^*(x^0) \setminus X_w^0(x^0) \).

Let us show that \(w_\lambda(x,y) \leq w_{\lambda+0}(x,y) \) and \(w_{\lambda-0}(x,y) \leq w_\lambda(x,y) \) for all \(\lambda > 0 \) and \(x,y \in X \), which, by virtue of inequalities (1.2.4), establish the continuity property of \(w \). For any \(n \in \mathbb{N} \) and \(\mu > \lambda \), the definition of \(w \) implies

$$\left(\frac{d(x_n, y_n)}{\mu} \right)^{1/n} \leq w_\mu(x,y),$$
and so, as $\mu \to \lambda + 0$, we get
\[
\left(\frac{d(x_n, y_n)}{\lambda} \right)^{1/n} \leq w_{\lambda+0}(x, y).
\]
Taking the supremum over all $n \in \mathbb{N}$, we obtain the first inequality above. Now, given $\lambda, \mu > 0$, we have
\[
w_\mu (x, y) = \sup_{n \in \mathbb{N}} \left(\frac{d(x_n, y_n)}{\lambda} \right)^{1/n} \cdot \left(\frac{\lambda}{\mu} \right)^{1/n} \leq w_\lambda (x, y) \cdot \sup_{n \in \mathbb{N}} (\lambda/\mu)^{1/n}
\]
\[
= w_\lambda (x, y) \cdot \max \{1, \lambda/\mu\}, \quad x, y \in X.
\] (2.4.2)

It follows that if $0 < \mu < \lambda$, then $w_\mu (x, y) \leq w_\lambda (x, y) \cdot \lambda/\mu$, and so, passing to the limit as $\mu \to \lambda - 0$, we get $w_{\lambda-0}(x, y) \leq w_\lambda (x, y)$. □

Note that (2.4.2) with $y = x^0$ proves that $X_\mu^{\text{fin}}(x^0) = X_\mu^*(x^0)$, and establishes the following characterization of this modular space in terms of sequences $x = \{x_n\}$ and $x^0 = \{x^0_n\}$ themselves:
\[
x \in X_\mu^*(x^0) \quad \text{if and only if} \quad w_1(x, x^0) = \sup_{n \in \mathbb{N}} \left(d(x_n, x^0_n) \right)^{1/n} < \infty. \quad (2.4.3)
\]

The modular space $X_\mu^0(x^0)$ is characterized in the following way.

Proposition 2.4.2. Given $x \in X$, $x \in X_\mu^0(x^0)$ if and only if $\lim_{n \to \infty} \left(d(x_n, x^0_n) \right)^{1/n} = 0$.

Proof. Suppose $x \in X_\mu^0(x^0)$. Then $w_\lambda (x, x^0) \to 0$ as $\lambda \to \infty$, and so, for each $\varepsilon > 0$ there exists $\lambda_0 = \lambda_0(\varepsilon) > 0$ such that
\[
w_{\lambda_0}(x, x^0) = \sup_{n \in \mathbb{N}} \left(\frac{d(x_n, x^0_n)}{\lambda_0} \right)^{1/n} \leq \varepsilon. \quad (2.4.4)
\]
This inequality is equivalent to
\[
\left(d(x_n, x^0_n) \right)^{1/n} \leq (\lambda_0)^{1/n} \cdot \varepsilon \quad \text{for all} \quad n \in \mathbb{N}. \quad (2.4.5)
\]
Passing to the limit superior as $n \to \infty$, we get
\[
\limsup_{n \to \infty} \left(d(x_n, x^0_n) \right)^{1/n} \leq \varepsilon.
\]
Due to the arbitrariness of $\varepsilon > 0$, $(d(x_n, x^0_n))^{1/n} \to 0$ as $n \to \infty$.
Now, assume that \((d(x_n, x_n^o))^{1/n} \to 0\) as \(n \to \infty\). Given \(\epsilon > 0\), there exists a number \(n_0 = n_0(\epsilon) \in \mathbb{N}\) such that \((d(x_n, x_n^o))^{1/n} < \epsilon\) for all \(n > n_0\). Setting

\[
\lambda_1(\epsilon) = \max\{1, 1/\epsilon^{n_0}\} \cdot \max_{1 \leq n \leq n_0} d(x_n, x_n^o)
\]

and noting that

\[
d(x_n, x_n^o) = \frac{d(x_n, x_n^o)}{\epsilon^n} \leq \lambda_1(\epsilon) \cdot \epsilon^n \text{ for all } 1 \leq n \leq n_0,
\]

we obtain (2.4.5) with \(\lambda_0 = \lambda_0(\epsilon) = \max\{1, \lambda_1(\epsilon)\}\). It follows that inequality (2.4.4) holds, whence, by virtue of (1.2.1), \(w_\lambda(x, x^o) \leq w_{\lambda_0}(x, x^o) \leq \epsilon\) for all \(\lambda \geq \lambda_0\). This means that \(w_\lambda(x, x^o) \to 0\) as \(\lambda \to \infty\), i.e., \(x \in X_w^*(x^o)\).

The metric \(d_w^0\) on the modular space \(X_w^0(x^o)\) is given by

\[
d_w^0(x, y) = \sup_{n \in \mathbb{N}} \left(d(x_n, y_n) \right)^{(1/(n+1)}), \quad x, y \in X_w^*(x^o).
\]

(2.4.6)

Recalling that \(w\) is nonconvex, we note that \(d_w^*(x, y) = \sup_{n \in \mathbb{N}} d(x_n, y_n)\) is only an extended metric on \(X_w^*(x^o)\) and \(X\) (however, \(d_w^*(x, y)\) is a metric on the set of all bounded sequences in \(M\); see Remark 2.4.3 below).

Writing \(x = \{x_n\} \in c(x^o)\) if \(\lim_{n \to \infty} d(x_n, x_n^o) = 0\), and \(x = \{x_n\} \in \ell_\infty(x^o)\) if \(\sup_{n \in \mathbb{N}} d(x_n, x_n^o) < \infty\), we have the following (proper) inclusion relations:

\[
X_w^0(x^o) \subset c(x^o) \subset \ell_\infty(x^o) \subset X_w^{\infty}(x^o) = X_w^*(x^o).
\]

(2.4.7)

(Here \(c(x^o)\) is the set of all sequences in \(M\), which are metrically equivalent to \(x^o = \{x_n\}\), and \(\ell_\infty(x^o)\) is the set of all sequences in \(M\), which are bounded relative to \(x^o\).) The first inclusion is a consequence of Proposition 2.4.2, and the third one is established as follows: if \(b = \sup_{n \in \mathbb{N}} d(x_n, x_n^o) < \infty\), then, for all \(\lambda > 0\), we have:

\[
w_\lambda(x, x^o) = \sup_{n \in \mathbb{N}} \left(\frac{d(x_n, x^o)}{\lambda} \right)^{1/n} \leq \sup_{n \in \mathbb{N}} \left(\frac{b}{\lambda} \right)^{1/n} = \max\{1, b/\lambda\} < \infty.
\]

Remark 2.4.3. 1. If \(x^o = \{x_n^o\}\) is a convergent sequence in \(M\), then every sequence \(x = \{x_n\} \in c(x^o)\) is also convergent in \(M\) (to the limit of \(x^o\)), and if \(x^o\) is bounded in \(M\) (i.e., \(\sup_{n, m \in \mathbb{N}} d(x^o, x^o_m) < \infty\)), then every \(x \in \ell_\infty(x^o)\) is also bounded in \(M\).

2. In the particular case when \(M = \mathbb{R}\) with metric \(d(x, y) = |x - y|\) and \(x^o = 0\) is the zero sequence, we have: \(c_0 = c(0)\) is the set of all real sequences convergent to zero, and \(\ell_\infty = \ell_\infty(0)\) is the set of all bounded real sequences. The following examples are illustrative (see (2.4.7)): (a) \(\{1/n\} \in c_0 \setminus X_w^0(0)\); (b) \(\{2^n\} \in X_w^*(0) \setminus \ell_\infty\); (c) \(\{2^{-n^2}\} \in X_w^0(0)\); (d) \(\{2^{n^2}\} \not\in X_w^*(0)\); (e) if \(x = \{n\}\), then \(x \in X_w^*(0)\), \(d_w^0(x, 0) = \sup_{n \in \mathbb{N}} n^{1/(n+1)} < \infty\), while \(d_w^*(x, 0) = \sup_{n \in \mathbb{N}} n = \infty\).
3. The classical F-norm $|x|_\rho = d_w^0(x, 0) = \sup_{n \in \mathbb{N}} |x_n|^{1/(n+1)}$, corresponding to
\[\rho(x) = w_1(x, 0) \] with w from (2.4.1) and $M = \mathbb{R}$, is well-defined for $x = \{x_n\}$
from $X_\rho = X_w^0(0) \subset c_0$ and satisfies conditions (F.1)–(F.4) from Remark 2.2.3.
However, on the larger modular space $X_\rho^* = X_w^*(0)$ (see Remark 2.3.4(1)), the
functional $| \cdot |_\rho$ does not satisfy the continuity condition (F.4): for instance, if
$x = (2^{n+1})_{n=1}^\infty$ and $\alpha_n = 1/k$, then $x \in X_\rho^* \setminus X_\rho$ and $\alpha_k \to 0$ as $k \to \infty$, but
\[|\alpha_k x|_\rho = \sup_{n \in \mathbb{N}} (\alpha_k \cdot 2^{n+1})^{1/(n+1)} = 2 \sup_{n \in \mathbb{N}} \left(\frac{1}{k} \right)^{1/(n+1)} = 2 \quad \text{for all} \quad k \in \mathbb{N}. \]

2.5 Intermediate Metrics

In Theorem 2.2.1 and Corollary 2.2.6, we have seen two expressions for metric d_w^0
on X_w^* (see also Theorem 2.3.1 if w is convex). In this section, we define and study
infinitely many metrics on the modular space X_w^*.

Theorem 2.5.1. Let w be a (pseudo)modular on the set X. Given $0 \leq \theta \leq 1$ and
$x, y \in X$, setting
\[d_w^0(x, y) = \inf_{\lambda > 0} \left[(1 - \theta) \max\{\lambda, w_\lambda(x, y)\} + \theta (\lambda + w_\lambda(x, y)) \right], \quad (2.5.1) \]
we have: d_w^0 is an extended (pseudo)metric on X, and a (pseudo)metric on the
modular space $X_w^* = X_w^*(x^0)$ for any $x^0 \in X$, and the following (sharp) inequalities
hold:
\[d_w^0(x, y) \leq (1-\theta)d_w^0(x, y) + \theta d_w^1(x, y) \leq d_w^0(x, y) \leq d_w^1(x, y) \leq 2d_w^0(x, y). \quad (2.5.2) \]

Proof. Clearly, $0 \leq d_w^0(x, y) \leq \infty$ for all $x, y \in X$ and $0 \leq \theta \leq 1$.

1. First, we prove our theorem for $\theta = 0$ and $\theta = 1$ simultaneously (for d_w^0, this
is the second proof). Given $u, v \in [0, \infty]$, we denote by $u \oplus v$ either $\max\{u, v\}$
or $u + v$ (and $u \oplus v = \infty$ if $u = \infty$ or $v = \infty$). Then $d_w^0(x, y)$ and $d_w^1(x, y)$ are
expressed by the formula:
\[d_w^0(x, y) = \inf_{\lambda > 0} \lambda \oplus w_\lambda(x, y), \quad x, y \in X. \quad (2.5.3) \]

1a. If $x, y \in X_w^*$, then $d_w^0(x, y) < \infty$. In fact, since $x \sim y$, there exists $\lambda_0 > 0$
such that $w_{\lambda_0}(x, y) < \infty$, and so, the set $\{\lambda \oplus w_\lambda(x, y) : \lambda > 0\} \setminus \{\infty\}$
is nonempty and bounded from below by 0 (i.e., is contained in $[0, \infty]$).

1b. Given $x \in X$, we have, by (i), $\lambda \oplus w_\lambda(x, x) = \lambda \oplus 0 = \lambda$ for all $\lambda > 0$, and
so, $d_w^0(x, x) = \inf_{\lambda > 0} \lambda = 0$. Now, suppose w is a modular. Let $x, y \in X$, and
$d_w^0(x, y) = 0$. If we show that $w_\lambda(x, y) = 0$ for all $\lambda > 0$, then axiom (i) will
imply $x = y$. On the contrary, assume that $w_{\lambda_0}(x, y) \neq 0$ for some $\lambda_0 > 0$. Given $\lambda > 0$, we have two cases: if $\lambda \geq \lambda_0$, then

$$\lambda \oplus w_\lambda(x, y) \geq \lambda \oplus 0 = \lambda \geq \lambda_0,$$

and if $\lambda < \lambda_0$, then, by the monotonicity (1.2.1) of w, we find

$$\lambda \oplus w_\lambda(x, y) \geq 0 \oplus w_\lambda(x, y) = w_\lambda(x, y) \geq w_{\lambda_0}(x, y).$$

Hence $\lambda \oplus w_\lambda(x, y) \geq \min\{\lambda_0, w_{\lambda_0}(x, y)\} = \lambda_1$ for all $\lambda > 0$. By the definition of d^\oplus_w, we get $d^\oplus_w(x, y) \geq \lambda_1 > 0$, which contradicts the assumption.

lc. Axiom (ii) for w implies the symmetry property of d^\oplus_w.

ld. Let us establish the triangle inequality $d^\oplus_w(x, y) \leq d^\oplus_w(x, z) + d^\oplus_w(z, y)$ for all $x, y, z \in X$. The inequality is clear if at least one summand on the right is infinite. So, we assume that both of them are finite. By (2.5.3), given $\varepsilon > 0$, there exist $\lambda = \lambda(\varepsilon) > 0$ and $\mu = \mu(\varepsilon) > 0$ such that

$$\lambda \oplus w_\lambda(x, z) \leq d^\oplus_w(x, z) + \varepsilon \quad \text{and} \quad \mu \oplus w_\mu(z, y) \leq d^\oplus_w(z, y) + \varepsilon.$$

Since \oplus is max or $+$, (2.5.3) and axiom (iii) imply

$$d^\oplus_w(x, y) \leq (\lambda + \mu) \oplus w_{\lambda+\mu}(x, y) \leq (\lambda + \mu) \oplus (w_\lambda(x, z) + w_\mu(z, y)) \leq \bigl(\lambda \oplus w_\lambda(x, z)\bigr) + \bigl(\mu \oplus w_\mu(z, y)\bigr) \leq d^\oplus_w(x, z) + \varepsilon + d^\oplus_w(z, y) + \varepsilon.$$

(2.5.4)

It remains to take into account the arbitrariness of $\varepsilon > 0$.

2. That d^\ominus_w is well-defined, nondegenerate (when w is a modular), and symmetric can be proved along the same lines as in steps 1a–1c. Let us show that d^\ominus_w satisfies the triangle inequality. Suppose $d^\ominus_w(x, z)$ and $d^\ominus_w(z, y)$ are finite. Given $\varepsilon > 0$, by virtue of (2.5.1), there exist $\lambda = \lambda(\varepsilon) > 0$ and $\mu = \mu(\varepsilon) > 0$ such that

$$(1 - \theta) \max\{\lambda, w_\lambda(x, z)\} + \theta (\lambda + w_\lambda(x, z)) \leq d^\ominus_w(x, z) + \varepsilon,$$

$$(1 - \theta) \max\{\mu, w_\mu(z, y)\} + \theta (\mu + w_\mu(z, y)) \leq d^\ominus_w(z, y) + \varepsilon.$$

Taking into account (2.5.1), axiom (iii) and the last inequality in (2.5.4), we get:

$$d^\ominus_w(x, y) \leq (1 - \theta) \max\{\lambda + \mu, w_{\lambda+\mu}(x, y)\} + \theta (\lambda + \mu + w_{\lambda+\mu}(x, y)) \leq \max\{\lambda, w_\lambda(x, z)\} + \max\{\mu, w_\mu(z, y)\} + \theta (\lambda + w_\lambda(x, z) + w_\mu(z, y)) \leq (1 - \theta) \bigl[\max\{\lambda, w_\lambda(x, z)\} + \max\{\mu, w_\mu(z, y)\}\bigr] + \theta \bigl[\lambda + w_\lambda(x, z) + \mu + w_\mu(z, y)\bigr]$$

+ $\theta (\lambda + w_\lambda(x, z) + w_\mu(z, y))$.
2.5 Intermediate Metrics

\[\begin{aligned}
&= \left[(1 - \theta) \max\{\lambda, w_\lambda(x, z)\} + \theta(\lambda + w_\lambda(x, z))\right] \\
&\quad + \left[(1 - \theta) \max\{\mu, w_\mu(z, y)\} + \theta(\mu + w_\mu(z, y))\right] \\
&\leq d^0_w(x, z) + \varepsilon + d^0_w(z, y) + \varepsilon.
\end{aligned} \]

By the arbitrariness of \(\varepsilon > 0 \), the triangle inequality for \(d^0_w \) follows.

3. The inequalities \(\max\{u, v\} \leq u + v \leq 2 \max\{u, v\} \) for \(u, v \geq 0 \) imply

\[d^0_w(x, y) \leq d^1_w(x, y) \leq 2d^0_w(x, y) \quad \text{for all} \quad x, y \in X. \tag{2.5.5} \]

This proves also the first and fourth inequalities in (2.5.2). Since, for any \(\lambda > 0 \),

\[d^0_w(x, y) \leq \max\{\lambda, w_\lambda(x, y)\} \quad \text{and} \quad d^1_w(x, y) \leq \lambda + w_\lambda(x, y), \]

we find

\[
(1 - \theta)d^0_w(x, y) + \theta d^1_w(x, y) \leq (1 - \theta) \max\{\lambda, w_\lambda(x, y)\} + \theta(\lambda + w_\lambda(x, y)) \\
\leq \lambda + w_\lambda(x, y),
\]

which establishes the second and third inequalities in (2.5.2).

The sharpness of inequalities (2.5.2) is elaborated in Examples 2.5.5 and 2.5.6.

Remark 2.5.2. Not only intermediate (pseudo)metrics \(d^\theta_w \) between \(d^0_w \) and \(d^1_w \) can be introduced as in (2.5.1): given \(\alpha, \beta \geq 0 \) with \(\alpha + \beta \neq 0 \), we set

\[d^{\alpha, \beta}_w(x, y) = \inf_{\lambda > 0} \left[\alpha \max\{\lambda, w_\lambda(x, y)\} + \beta(\lambda + w_\lambda(x, y))\right], \quad x, y \in X. \]

In this case, we have \(d^{\alpha, \beta}_w(x, y) = (\alpha + \beta)d^\theta_w(x, y) \) with \(\theta = \beta / (\alpha + \beta) \).

Remark 2.5.3. Different binary operations \(\oplus \) on \([0, \infty)\) can be used in formula (2.5.3) to define \(d^{\oplus}_w(x, y) \), but then only the generalized triangle inequality holds:

\[d^{\oplus}_w(x, y) \leq C(d^{\oplus}_w(x, z) + d^{\oplus}_w(z, y)) \quad \text{with} \quad C > 1. \tag{2.5.6} \]

This can be seen as follows. Suppose \(\varphi : [0, \infty) \to [0, \infty) \) is a continuous function such that \(\varphi(0) = 0 \), \(\varphi(u) > 0 \) for \(u > 0 \) and, for some constant \(C > 1 \),

\[\varphi\left(\frac{u + v}{C}\right) \leq \varphi(u) + \varphi(v) \leq \varphi(u + v) \quad \text{for all} \quad u, v \geq 0. \tag{2.5.7} \]
(Here the right-hand side inequality is the superadditivity property of \(\varphi \), which is satisfied, e.g., by any convex function \(\varphi \); see Appendix A.1). Denoting by \(\varphi^{-1} \) the inverse function of \(\varphi \) and setting

\[
 u \oplus v = \varphi^{-1}(\varphi(u) + \varphi(v)) \quad \text{for all } u, v \geq 0,
\]

we find, from (2.5.7), that

\[
 u \oplus v \leq u + v \leq C(u \oplus v).
\]

(2.5.9)

For instance, if \(\varphi(u) = u^\rho \) with \(\rho > 1 \), then \(u \oplus v = (u^\rho + v^\rho)^{1/\rho} \), and inequalities (2.5.9) hold with sharp constant \(C = 2^{1-(1/\rho)} \), and if \(\varphi(u) = e^u - 1 \), then \(u \oplus v = \log(e^u + e^v - 1) \), and (2.5.9) hold with sharp constant \(C = 2 \). Now, in order to obtain (2.5.6), we take into account (2.5.3) and (2.5.9), and find that the right-hand side in (2.5.4) is less than or equal to

\[
 \left(\lambda + \mu \right) + \left(w_\lambda(x, z) + w_\mu(z, y) \right) = \left(\lambda + w_\lambda(x, z) \right) + \left(\mu + w_\mu(z, y) \right)
\]

\[
 \leq C \left[\left(\lambda + w_\lambda(x, z) \right) + \left(\mu + w_\mu(z, y) \right) \right]
\]

\[
 \leq C \left[d^\Theta_w(x, z) + \varepsilon + d^\Theta_w(z, y) + \varepsilon \right], \quad \varepsilon > 0.
\]

The generalized triangle inequality (2.5.6) can also be obtained if, instead of \(d^\Theta_w(x, y) \) from (2.5.3), we consider the quantity

\[
 d^\Theta_w(x, y) = \inf_{\lambda > 0} \left(\max \left\{ \lambda, w_\lambda(x, y) \right\} \right) \oplus \left(\lambda + w_\lambda(x, y) \right)
\]

with the operation \(\oplus \) on \([0, \infty)\) of the form (2.5.8).

As in Corollary 2.2.8, the right \(w_{+0} \) and left \(w_{-0} \) regularizations of \(w \) do not produce new metrics of the form (2.5.1) in the following sense.

Proposition 2.5.4. \(d^\Theta_{w_{+0}}(x, y) = d^\Theta_{w_{-0}}(x, y) = d^\Theta_w(x, y) \) for all \(0 \leq \theta \leq 1 \) and \(x, y \in X \).

Proof. For instance, let us verify this for \(\theta = 1 \). By virtue of (1.2.4), we have

\[
 \lambda + w_{\lambda+0}(x, y) \leq \lambda + w_\lambda(x, y) \leq \lambda + w_{\lambda-0}(x, y) \quad \text{for all } \lambda > 0,
\]

whence \(d^1_{w_{+0}}(x, y) \leq d^1_w(x, y) \leq d^1_{w_{-0}}(x, y) \).

Let us show that \(d^1_{w_{+0}}(x, y) \geq d^1_w(x, y) \). Suppose \(d^1_{w_{+0}}(x, y) < \infty \), and \(u > d^1_{w_{+0}}(x, y) \). Let \(u > u_1 > d^1_{w_{+0}}(x, y) \). By (2.5.1) with \(\theta = 1 \), there exists \(\lambda_1 > 0 \) such that

\[
 \lim_{\lambda \to \lambda_1+0} \left(\lambda + w_\lambda(x, y) \right) = \lambda_1 + w_{\lambda_1+0}(x, y) \leq u_1 < u.
\]
It follows that \(\lambda_2 + w_{\lambda_2}(x, y) < u \) for some \(\lambda_2 > \lambda_1 \), which implies

\[
d_w^1(x, y) = \inf_{\lambda > 0} (\lambda + w_\lambda(x, y)) \leq \lambda_2 + w_{\lambda_2}(x, y) < u,
\]

and it remains to pass to the limit as \(u \to d_{w+0}^1(x, y) \).

Now, we show that \(d_w^1(x, y) \geq d_{w-0}^1(x, y) \). Let \(d_w^1(x, y) < \infty \), and \(u > d_w^1(x, y) \). Choose \(u_1 \) such that \(u > u_1 > d_w^1(x, y) \). By (2.5.1) with \(\theta = 1 \), there exists \(\mu_1 > 0 \) such that \(\mu_1 + w_{\mu_1}(x, y) \leq u_1 < u \). It follows from (1.2.4) that

\[
w_{\lambda - 0}(x, y) \leq w_{\mu_1}(x, y) < u - \mu_1 \quad \text{for all} \quad \lambda > \mu_1,
\]

and so,

\[
d_{w-0}^1(x, y) \leq \lambda_1 + w_{\lambda - 0}(x, y) < \lambda_1 + u - \mu_1.
\]

Passing to the limit as \(\lambda_1 \to \mu_1 + 0 \), we get \(d_{w-0}^1(x, y) \leq u \), and it remains to take into account the arbitrariness of \(u \) as above. \(\square \)

Example 2.5.5 (metric \(d_w^1 \)).

1. Let \(w_{\lambda}(x, y) = \lambda^{-p}d(x, y) \) be of the form (1.3.1) with \(p > 0 \). By Example 2.2.2(1), \(d_w^0(x, y) = (d(x, y))^{1/(p+1)} \).

 Let us calculate \(d_w^1(x, y) = \inf_{\lambda > 0} f(\lambda) \), where \(f(\lambda) = \lambda + \lambda^{-p}d(x, y) \) (and \(x \neq y \)). The derivative \(f'(\lambda) = 1 - p\lambda^{-p-1}d(x, y) \) vanishes at \(\lambda_0 = (pd(x, y))^{1/(p+1)} \), \(f'(\lambda) < 0 \) if \(0 < \lambda < \lambda_0 \), and \(f'(\lambda) > 0 \) if \(\lambda > \lambda_0 \), and so, \(f \) attains the global minimum on \((0, \infty)\) at the point \(\lambda_0 \), which is equal to

\[
d_w^1(x, y) = f(\lambda_0) = y(p) \cdot (d(x, y))^{1/(p+1)} \quad \text{for all} \quad x, y \in X,
\]

where

\[
y(p) = (p + 1)p^{-p/(p+1)}, \quad p > 0.
\]

Note that \(1 < y(p) \leq 2 \), \(y(p) = 2 \) if and only if \(p = 1 \), and \(y(1/p) = y(p) \).

The inequalities for \(y(p) \) can be established directly by taking the logarithm and investigating the resulting function for extrema, or they follow from (2.5.5). In particular, if \(p = 1 \), the expressions for \(d_w^0 \) and \(d_w^1 \) are of the form:

\[
d_w^0(x, y) = \sqrt{d(x, y)} \quad \text{and} \quad d_w^1(x, y) = 2\sqrt{d(x, y)}, \quad x, y \in X.
\]

2. Formulas for \(d_w^0 \) and \(d_w^1 \) above are valid in a somewhat more general case when a (pseudo)modular \(w \) on \(X \) is \(p \)-homogeneous with \(p > 0 \) in the sense that

\[
w_{\lambda}(x, y) = \lambda^{-p}w_1(x, y) \quad \text{for all} \quad \lambda > 0 \text{ and } x, y \in X.
\]
In this case, we have

\[d_w^0(x, y) = (w_1(x, y))^{1/(p+1)} \quad \text{and} \quad d_w^1(x, y) = \gamma(p) \cdot (w_1(x, y))^{1/(p+1)}. \]

(2.5.10)

One more example of a \(p \)-homogeneous modular \(w \) on a metric space \((X, d)\) is given by \(w_3(x, y) = (d(x, y)/\lambda)^p = \lambda^{-p}w_1(x, y)\) (see Example 2.3.5(1)).

3. Given a metric space \((X, d)\) and a convex function \(\varphi : [0, \infty) \to [0, \infty) \) vanishing at zero only, we set (cf. (1.3.5))

\[w_\lambda(x, y) = \lambda \varphi\left(\frac{d(x, y)}{\lambda}\right), \quad \lambda > 0, \quad x, y \in X. \]

Then \(w \) is a strict modular on \(X \) (cf. (1.3.8)), and since \(\varphi \) is increasing, continuous, and admits the continuous inverse \(\varphi^{-1} \), we find

\[d_w^0(x, y) = \inf \{ \lambda > 0 : \varphi(d(x, y)/\lambda) \leq 1 \} = d(x, y)/\varphi^{-1}(1). \]

In particular, if \(\varphi(u) = u^p \) with \(p > 1 \), we have \(d_w^0(x, y) = d(x, y) \), and taking into account that

\[w_\lambda(x, y) = \lambda \left(\frac{d(x, y)}{\lambda}\right)^p = \lambda^{-(p-1)}(d(x, y))^p = \lambda^{-(p-1)}w_1(x, y), \]

we conclude from (2.5.10) (replacing \(p \) there by \(p - 1 \)) that

\[d_w^1(x, y) = \gamma(p - 1) \cdot (w_1(x, y))^{1/p} = p(p - 1)^{(1-p)/p} \cdot d(x, y). \]

4. Setting \(w_\lambda(x, y) = e^{-\lambda}d(x, y) \) and following the same reasoning as in Example 2.5.5(1), we get

\[d_w^0(x, y) = \begin{cases}
 d(x, y) & \text{if } d(x, y) \leq 1, \\
 1 + \log d(x, y) & \text{if } d(x, y) > 1,
\end{cases} \quad x, y \in X. \]

Example 2.5.6 (metric \(d_w^0 \)). In order to be able to calculate the value \(d_w^0(x, y) \) from (2.5.1) explicitly for all \(0 \leq \theta \leq 1 \), here once again we consider the modular \(w_\lambda(x, y) = \lambda^{-\theta}d(x, y) \) of the form (1.3.1) with \(p > 0 \). Since the cases \(\theta = 0 \) and \(\theta = 1 \) were considered in Example 2.5.5(1), we are left with the case when \(0 < \theta < 1 \) (in calculations below, we assume that \(x \neq y \)).

To begin with, we note that \(d_w^0(x, y) = \inf_{\lambda > 0} f(\theta, \lambda) \), where the function \(f(\theta, \lambda) \) under the infimum sign in (2.5.1) is expressed as

\[f(\theta, \lambda) = \begin{cases}
 f_1(\lambda) \equiv w_\lambda(x, y) + \theta \lambda & \text{if } \lambda \leq w_\lambda(x, y), \\
 f_2(\lambda) \equiv \lambda + \theta w_\lambda(x, y) & \text{if } \lambda > w_\lambda(x, y),
\end{cases} \]
with \(f_1(\lambda) = \lambda^{-\rho} d(x, y) + \theta \lambda \) and \(f_2(\lambda) = \lambda + \theta \lambda^{-\rho} d(x, y) \), and the inequality
\(\lambda \leq w_2(x, y) = \lambda^{-\rho} d(x, y) \) is equivalent to \(\lambda \leq \lambda_0 = d_0(x, y) = (d(x, y))^{1/(p+1)} \).
Hence

\[
d^\theta_w(x, y) = \min_{\theta < \lambda \leq \lambda_0} \{ \inf_{\lambda < \lambda_0} f_1(\lambda), \inf_{\lambda > \lambda_0} f_2(\lambda) \}, \tag{2.5.11}
\]

where we note that \(f_1(\lambda_0) = f_2(\lambda_0) = \lambda_0(1 + \theta) \).

The derivative \(f'_1(\lambda) = -\lambda^{-\rho - 1}pd(x, y) + \theta \) is equal to zero only at the point
\(\lambda_1 = \lambda_0(p/\theta)^{1/(p+1)} \), \(f'_1(\lambda) < 0 \) if \(0 < \lambda < \lambda_1 \), and \(f'_1(\lambda) > 0 \) if \(\lambda > \lambda_1 \), and so, the global minimum of \(f_1 \) on \((0, \infty)\) is attained at \(\lambda_1 \) and is equal to
\[
f_1(\lambda_1) = \lambda_0 \gamma(p) \lambda^{\rho/(p+1)}.
\]

Similarly, the derivative \(f'_2(\lambda) = 1 - \lambda^{-\rho - 1} \theta pd(x, y) \) is equal to zero at the point
\(\lambda_2 = \lambda_0(\theta p)^{1/(p+1)} \), \(f'_2(\lambda) < 0 \) if \(0 < \lambda < \lambda_2 \), and \(f'_2(\lambda) > 0 \) for \(\lambda > \lambda_2 \), and so, \(f_2 \) attains the global minimum on \((0, \infty)\) at \(\lambda_2 \), where it has the value
\[
f_2(\lambda_2) = \lambda_0 \gamma(p) \theta^{1/(p+1)}.
\]

Given \(p > 0 \) and \(0 \leq \theta \leq 1 \), we have four cases: (I) \(p \geq 1 \) and \(\theta \leq 1/p \); (II) \(p > 1 \) and \(1/p < \theta \); (III) \(p < 1 \) and \(\theta \leq p \); and (IV) \(p < 1 \) and \(p < \theta \).

Cases (I), (III). We have \(p \geq 1 \geq \theta \) in case (I), and \(p > \theta \) in case (III), and so, \(\lambda_0 \leq \lambda_1 \). Since \(f_1 \) decreases on \((0, \lambda_1)\), the value \(\inf_{\lambda \leq \lambda_0} f_1(\lambda) \) is equal to
\(f_1(\lambda_0) = \lambda_0(1 + \theta) \). Also, we have \(\theta p \leq 1 \) in case (I), and \(\theta p < 1 \) in case (III), and so, \(\lambda_2 \leq \lambda_0 \). Since \(f_2 \) increases on \([\lambda_2, \infty)\), the value \(\inf_{\lambda > \lambda_0} f_2(\lambda) \) is equal to
\(f_2(\lambda_0) = \lambda_0(1 + \theta) \). By virtue of (2.5.11),
\(d^\theta_w(x, y) = \lambda_0(1 + \theta) \).

Case (II). As in case (I), since \(p > 1 \geq \theta \), \(\inf_{\lambda \leq \lambda_0} f_1(\lambda) = \lambda_0(1 + \theta) \).
Furthermore, \(\theta p > 1 \) implies \(\lambda_0 < \lambda_2 \), where \(\lambda_2 \) is the point of minimum of \(f_2 \) on \([\lambda_0, \infty)\), and so,
\[
\inf_{\lambda > \lambda_0} f_2(\lambda) = f_2(\lambda_2) = f_2(\lambda_0) = \lambda_0(1 + \theta) = \inf_{\lambda \leq \lambda_0} f_1(\lambda).
\]

It follows from (2.5.11) that
\(d^\theta_w(x, y) = f_2(\lambda_2) = \lambda_0 \gamma(p) \theta^{1/(p+1)} \).

Case (IV). Inequality \(p < \theta \) implies \(\lambda_1 < \lambda_0 \), and since \(\lambda_1 \) is the point of minimum of \(f_1 \) on \((0, \lambda_0)\), we find
\[
\inf_{\lambda \leq \lambda_0} f_1(\lambda) = f_1(\lambda_1) < f_1(\lambda_0) = \lambda_0(1 + \theta).
\]

As in case (III), since \(\theta p < 1 \), \(\inf_{\lambda > \lambda_0} f_2(\lambda) = \lambda_0(1 + \theta) \). By (2.5.11), we conclude that
\(d^\theta_w(x, y) = f_1(\lambda_1) = \lambda_0 \gamma(p) \theta^{p/(p+1)} \).
In this way, we have shown that

\[
d_w^\theta(x, y) = (d(x, y))^{1/(p+1)} \cdot \begin{cases}
1 + \theta & \text{if } 0 \leq \theta \leq 1/p \leq 1 \\
0 & \text{if } 0 \leq \theta \leq p < 1, \\
\gamma(p)\theta^{1/(p+1)} & \text{if } 0 < 1/p < \theta \leq 1, \\
\gamma(p)\theta^{\theta/(p+1)} & \text{if } 0 < p < \theta \leq 1.
\end{cases}
\] (2.5.12)

A few comments on this formula are in order. If \(\theta = 0 \) or \(\theta = 1 \), then it gives back the values \(d_w^0(x, y) \) and \(d_w^1(x, y) \) from Example 2.5.5(1). If \(p > 1 \) and \(\theta = 1/p \) in the third line of (2.5.12), then \(\gamma(p)\theta^{1/(p+1)} = 1 + \theta \) (as in the first line). Similarly, if \(p < 1 \) and \(\theta = p \) in the fourth line of (2.5.12), then \(\gamma(p)\theta^{\theta/(p+1)} = 1 + \theta \).

Note that, for any \(p > 0 \) and \(0 \leq \theta \leq 1 \), we have (cf. (2.5.2))

\[
(1 - \theta)d_w^0(x, y) + \theta d_w^1(x, y) = (1 - \theta + \theta\gamma(p)) \cdot (d(x, y))^{1/(p+1)}.
\]

For \(p \neq 1 \), we have \(1 < \gamma(p) < 2 \), so if (a) \(p > 1 \) and \(0 < \theta < 1 \), or (b) \(p < 1 \) and \(0 < \theta \leq p \), then \(1 - \theta + \theta\gamma(p) < 1 + \theta \), and so,

\[
(1 - \theta)d_w^0(x, y) + \theta d_w^1(x, y) < d_w^0(x, y), \quad x \neq y.
\]

Now, if \(p = 1 \), then \(\gamma(p) = 2 \) and \(1 - \theta + \theta\gamma(p) = 1 + \theta \), which imply

\[
d_w^0(x, y) = (1 + \theta)\sqrt{d(x, y)} = (1 - \theta)d_w^0(x, y) + \theta d_w^1(x, y) \quad \text{for all } 0 \leq \theta \leq 1.
\]

For a convex (pseudo)modular \(w \) on \(X \), \(\hat{w}_\lambda(x, y) = \lambda w_\lambda(x, y) \) is a (pseudo)modular on \(X \), so setting \(d_w^\theta* = d_{\hat{w}}^\theta \) and applying Theorem 2.5.1, we get

Theorem 2.5.7. If \(w \) is a convex (pseudo)modular on \(X \) and \(0 \leq \theta \leq 1 \), then

\[
d_w^\theta*(x, y) = \inf_{\lambda > 0} \left((1 - \theta) \max \{\lambda, \lambda w_\lambda(x, y)\} + \theta(\lambda + \lambda w_\lambda(x, y)) \right), \quad x, y \in X,
\]

is an extended (pseudo)metric on \(X \) and a (pseudo)metric on \(X_w^* \), and

\[
d_w^\theta*(x, y) \leq (1 - \theta)d_w^\theta*(x, y) + \theta d_w^1*(x, y) \leq d_w^\theta*(x, y) \leq d_w^1*(x, y) \leq 2d_w^\theta*(x, y),
\]

where (see (2.3.3)) \(d_w^\theta*(x, y) = d_w^\theta*(x, y) \).

Remark 2.5.8. Given \(0 \leq \theta \leq 1 \), \(d_w^\theta(x, y) < 1 \) implies \(d_w^\theta*(x, y) \leq d_w^\theta(x, y) \). In fact, for any \(r \) such that \(d_w^\theta(x, y) < r < 1 \) there exists \(\lambda = \lambda(r) > 0 \) such that

\[
(1 - \theta) \max \{\lambda, w_\lambda(x, y)\} + \theta(\lambda + w_\lambda(x, y)) \leq r < 1.
\]
It follows that \(\lambda = (1 - \theta)\lambda + \theta \lambda < 1 \),
\[
\max\{\lambda, \lambda w_\lambda (x, y)\} \leq \max\{\lambda, w_\lambda (x, y)\} \quad \text{and} \quad \lambda + \lambda w_\lambda (x, y) \leq \lambda + w_\lambda (x, y),
\]
and so,
\[
d_\lambda^0 (x, y) \leq (1 - \theta) \max\{\lambda, \lambda w_\lambda (x, y)\} + \theta(\lambda + \lambda w_\lambda (x, y)) \leq r.
\]
It remains to pass to the limit as \(r \to d_\lambda^0 (x, y) \).

Example 2.5.9. Let \(p \geq 1 \) and \(w_\lambda (x, y) = (d(x, y)/\lambda)^p \) be the \(p \)-homogeneous modular from Example 2.3.5(1). Then, by Example 2.5.5(1), (2),
\[
d_\lambda^1 (x, y) = \gamma(p) \cdot (d(x, y))^{p/(p+1)} \quad \text{and} \quad d_\lambda^{1*} (x, y) = \begin{cases} d(x, y) & \text{if } p = 1, \\ \gamma(p-1)d(x, y) & \text{if } p > 1. \end{cases}
\]

2.6 Bibliographical Notes and Comments

Sections 2.1 and 2.2. Modular spaces \(X_\lambda^* \) and \(X_\lambda^0 \) were introduced in Chistyakov [22] and studied in [24, 25, 28]. The space \(X_\lambda^0 \) is a counterpart of the classical modular space \(X_\rho \) defined in Musielak and Orlicz [77]; see Remark 2.2.3(1), in which the main results of [77] are briefly described. As condition (p.4) from Sect.1.3.3 is crucial for defining the \(F \)-norm \(|x|_\rho \) on \(X_\rho \), axiom (iii) in Definition 1.2.1 is a proper tool to define the (pseudo)metric \(d_\lambda^0 (x, y) \) on the space \(X_\lambda^* \), which is larger than \(X_\lambda^0 \).

The properties of \(d_\lambda^0 (x, y) \) are based on the properties of quantity \(g^0 \) from (2.2.1) (recall that \(d_\lambda^0 (x, y) = (w^{x,y})^0 \)). This allows us to obtain an alternative expression for the (pseudo)metric \(d_\lambda^0 (x, y) \) in Corollary 2.2.6.

Modular space \(X_\lambda^{\text{fin}} \) is (natural and) new. Its role will be more clear below (see Theorem 3.3.8): some ‘duality’ holds between the modular spaces.

Corollary 2.2.8 was first established in Chistyakov [28].

Lemma 2.2.9 and Theorem 2.2.11 are sharp refinements of Theorem 2.10 from Chistyakov [24]. Counterparts of Theorem 2.2.11(d), (e) for classical modulars are presented in Maligranda [68, Theorem 1.4].

Theorem 2.2.13 is new.

Section 2.3. In the convex case, the results of the classical modular theory are presented in Remark 2.3.4(1). They were established by Nakano [81, Sect. 81], Musielak and Orlicz [78], and Orlicz [90] (for \(s \)-convex modulars with \(0 < s \leq 1 \)). For Orlicz modulars (i.e., integral modulars of the form \(\rho(x) = \int_{\Omega} \varphi(|x(t)|)d\mu \)), the norm \(\|x\|_\rho = \inf\{\varepsilon > 0 : \rho(x/\varepsilon) \leq 1\} \) on \(X_\rho^* \) was considered by Morse and Transue [73] and Luxemburg [66]. Note that the norm \(\|x\|_\rho \) is the Minkowski functional \(p_A (x) = \inf\{\varepsilon > 0 : x/\varepsilon \in A\} \) of the convex set \(A = \{x: \rho(x) \leq 1\} \).
Furthermore, Musielak and Orlicz [78] proved inequalities of the form (2.3.6) and (2.3.7) for classical convex modulars ρ, and Orlicz [90] established the representation $\|x\|_\rho = \inf_{t>0} \sup \{t^{-1}, \rho(tx)t^{-1}\}$ (cf. the second equality in (2.3.3)).

The (pseudo)metric $d_w^*(x,y)$ on X^*_w was introduced in Chistyakov [22]. It is seen from the expressions for $d_w^*(x,y)$ and $\|x\|_\rho$ that $d_w^*(x,y)$ is a counterpart of the norm $\|x\|_\rho$. Interestingly, the idea of definition of $d_w^*(x,y) = (\hat{\omega}_{x,y})^0$ has no relation with the idea of Minkowski’s functional of a convex set, and relies on g^0 from (2.2.1), however, by virtue of the ‘embedding’ (1.3.3), for convex modulars on linear spaces, we get $\|x\|_\rho = d_w^*(x,0)$ (see Remark 2.3.4(1)).

Section 2.4. The first modular stands for illustrative purposes—its idea is to generalize, in a straightforward way, the well-known space ℓ_p of p-summable sequences. The second modular (2.4.1), mentioned in [24, Example 3.2], is more interesting and studied in detail (see also Example 4.2.7(2)). Note that modular (2.4.1) can be obtained, via (1.3.3), from the classical modular $\|x\|_\rho = \sup_{n\in\mathbb{N}} \sqrt{|x_n|}$ for $x = \{x_n\} \in \mathbb{R}^\mathbb{N}$, see Rolewicz [95, Example 1.2.3].

Section 2.5. The whole material of Sect. 2.5 is new. Connections with the classical modular theory are as follows. Metric $d^\theta_w(x,y)$ from (2.5.1) for $\theta = 1$ is a counterpart of the F-norm $|x|_\rho^1 = \inf_{t>0}(1 + t\rho(tx))/t$, $x \in X_\rho$, from Koshi and Shimogaki [53], where inequality $|x|_\rho \leq |x|_\rho^1 \leq 2|x|_\rho$ of the form (2.5.5) was also established; here $|x|_\rho = \inf \{\varepsilon > 0 : \rho(x/\varepsilon) \leq \varepsilon\}$ is the Musielak-Orlicz F-norm.

The idea to define the operation \oplus in (2.5.8) is taken from Musielak [74] and Musielak and Peetre [79] (see also Musielak [75, Sect. 3]).

The classical variant of Example 2.5.5 was elaborated in Maligranda [68, p. 4].

Metric $d^\theta_w^*(x,y)$ from Theorem 2.5.7 for $\theta = 1$ is a counterpart of the Amemiya norm $\|x\|_\rho^1 = \inf_{t>0}(1 + \rho(tx))/t$, $x \in X^*_\rho = X_\rho$ (see Nakano [81, Sect. 81], Hudzik and Maligranda [48], Maligranda [68, p. 6], Musielak [75, Theorem 1.10]).

For more information about the modular theory on linear spaces and Orlicz spaces we refer to Adams [1], Kozlowski [55], Krasnosel’skiǐ and Rutickiǐ [56], Lindenstrauss and Tzafriri [65], Luxemburg [66], Maligranda [68], Musielak [75], Nakano [80, 81], Orlicz [89], Rao and Ren [92, 93], Rolewicz [95].