Contents

Part I Public Transport in the Era of ITS - Francesco Viti

1 Public Transport in the Era of ITS: The Role of Public Transport in Sustainable Cities and Regions 3
 Xavier Roselló, Anders Langeland and Francesco Viti

 1.1 Accessibility and Social Exclusion 4

 1.2 City Structure and Its Growth 6
 1.2.1 Urban Sprawl and Socio-economic Transformations 6
 1.2.2 Consequences of Expansion for the Transport System 8

 1.3 Energy Consumption and Efficiency 10
 1.3.1 Beyond Movement .. 11
 1.3.2 Primary Energy and Fossil Fuel 12

 1.4 Externalities .. 13
 1.4.1 Greenhouse Gas Emissions 13
 1.4.2 Other Pollutant Emissions 14
 1.4.3 Noise .. 15
 1.4.4 Congestion ... 16
 1.4.5 Consumption of Public Space 16
 1.4.6 Safety and Security 16

 1.5 Unit Mobility Costs 18

 1.6 Mobility and Public Transport in European Metropolitan Areas ... 19
 1.6.1 The EMTA Association 19
 1.6.2 Some Mobility Indicators in Metropolitans Areas 20
 1.6.3 Public Transport Subsidies 23

 1.7 The Future of Transport and Mobility in Europe:
 Smart Cities and Communities 25

 1.8 Reference Notes and Concluding Remarks 26

References ... 26
2 Public Transport in the Era of ITS: Forms of Public Transport

Kjell Jansson, Ingmar Andreasson and Karl Kottenhoff

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1 Organisation and Products</td>
<td>30</td>
</tr>
<tr>
<td>2.1.1 Regulation Versus Deregulation</td>
<td>30</td>
</tr>
<tr>
<td>2.1.2 Integration Issues</td>
<td>33</td>
</tr>
<tr>
<td>2.1.3 Public Transport Products</td>
<td>36</td>
</tr>
<tr>
<td>2.1.4 Multimodal Transport</td>
<td>39</td>
</tr>
<tr>
<td>2.2 Vehicles</td>
<td>42</td>
</tr>
<tr>
<td>2.2.1 Trains</td>
<td>42</td>
</tr>
<tr>
<td>2.2.2 Buses and Coaches</td>
<td>44</td>
</tr>
<tr>
<td>2.2.3 Aircrafts</td>
<td>45</td>
</tr>
<tr>
<td>2.3 Infrastructures and Networks</td>
<td>45</td>
</tr>
<tr>
<td>2.3.1 Right of Way</td>
<td>46</td>
</tr>
<tr>
<td>2.3.2 Nodes</td>
<td>51</td>
</tr>
<tr>
<td>2.3.3 Topological Structures</td>
<td>55</td>
</tr>
<tr>
<td>2.4 Service Performances</td>
<td>59</td>
</tr>
<tr>
<td>2.4.1 Service and Stop Capacity</td>
<td>59</td>
</tr>
<tr>
<td>2.4.2 Systems Speed—Boarding, Alighting and Travel Times</td>
<td>63</td>
</tr>
<tr>
<td>2.4.3 Reliability, Punctuality, Regularity and Robustness</td>
<td>64</td>
</tr>
<tr>
<td>2.5 Conventional and Unconventional Services</td>
<td>65</td>
</tr>
<tr>
<td>2.5.1 Complementary Services</td>
<td>65</td>
</tr>
<tr>
<td>2.5.2 High-Level Bus and Rail-Like Systems</td>
<td>68</td>
</tr>
<tr>
<td>2.5.3 Demand-Responsive Services</td>
<td>70</td>
</tr>
<tr>
<td>2.5.4 Paratransit</td>
<td>72</td>
</tr>
<tr>
<td>2.6 Automation and New Transport Systems</td>
<td>77</td>
</tr>
<tr>
<td>2.6.1 Advanced Control for Rail Systems</td>
<td>77</td>
</tr>
<tr>
<td>2.6.2 Automated Rail and Metro Systems</td>
<td>78</td>
</tr>
<tr>
<td>2.6.3 Cable-Propelled Transport (CPT)</td>
<td>79</td>
</tr>
<tr>
<td>2.6.4 Personal Rapid Transit (PRT)</td>
<td>79</td>
</tr>
<tr>
<td>2.6.5 Automated Road Transport</td>
<td>80</td>
</tr>
<tr>
<td>2.7 Reference Notes and Concluding Remarks</td>
<td>81</td>
</tr>
<tr>
<td>References</td>
<td>83</td>
</tr>
</tbody>
</table>

3 Public Transport in the Era of ITS: ITS Technologies for Public Transport

Andrés Monzón, Sara Hernandez, Andrés García Martínez, Ioannis Kaparias and Francesco Viti

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1 ITS Solutions for Fleet Management</td>
<td>87</td>
</tr>
<tr>
<td>3.1.1 Infomobility Tools for Sustainable Fleet Management (Craiova, Romania)</td>
<td>88</td>
</tr>
<tr>
<td>3.1.2 Monitoring and Planning of Public Transport Systems (San Sebastian, Spain)</td>
<td>90</td>
</tr>
</tbody>
</table>
3.1.3 CCTV Monitoring System on Public Transport for Security Purposes (Lodz, Poland) 91
3.1.4 Consumption Monitoring and Ecodriving Training (Forli–Cesena, Italy) 92

3.2 Integrated Management of Traffic and Public Transport Prioritisation .. 93
3.2.1 Transit Signal Priority ... 93
3.2.2 Bus Priority System (Toulouse, France) 95
3.2.3 Revolutionised Public Transport with Dedicated Bus–Tram Lane (Warsaw, Poland) 96
3.2.4 Bus Priority, the “Greenways Scheme” (Edinburgh, Scotland) .. 97
3.2.5 Speed Advisory Based on Signal Phase and Time (SPaT) Information 98

3.3 Intermodal Services Coordination and Interchange Facilities ... 98
3.3.1 Integrated Public Transport Guide (Almada, Portugal) ... 100
3.3.2 The Urban Mobility Website: Information About Public Transport on Site (Sofia, Bulgaria) 101
3.3.3 Call-a-Bike: Public Bicycles in Germany ... 101
3.3.4 Multimodal Travel Planners ... 103

3.4 Ticketing .. 103
3.4.1 On-Street Ticket Vending Machines (Norwich, UK) ... 104
3.4.2 Development and Upgrade of the E-Ticketing System (Brescia, Italy) .. 105
3.4.3 The Viva Smart Card System (Lisbon, Portugal) ... 106
3.4.4 The Use of Ticket Validation for Transit Planning Purposes (Barcelona, Spain) 107
3.4.5 Using Ticketing Data for Improving Transit Planning and Scheduling Services 108

3.5 Real-Time Information Services ... 109
3.5.1 Real-Time Countdown System (London, UK) ... 110
3.5.2 Real-Time Passenger Information at Bus Stops (Lille Métropole, France) 111
3.5.3 VAO, Traffic Information Austria ... 112
3.5.4 Two-Way ICT Communications Through Crowdsourcing Data Collection 113

3.6 Development and Maturity Level of ITS in Europe ... 114
3.6.1 Broad Overview of the State of Public Transport ITS Deployment in Europe 115
3.6.2 More Detailed Insight of Public Transport ITS Deployment in Selected European Cities 120
3.6.3 Discussion and Outlook of Public Transport ITS Maturity and Deployment in Europe 122
3.7 Including ITS Factors in Transit Assignment 124
3.8 Reference Notes and Concluding Remarks 125
References ... 126

Part II From Transit Systems to Models - Klaus Noeckel

4 From Transit Systems to Models: Purpose of Modelling 131
Markus Friedrich, Fabien Leurent, Irina Jackiva, Valentina Fini and Sebastián Raveau
4.1 The Planning Process .. 132
 4.1.1 States and Phases of a Transport Plan 132
 4.1.2 Public Transport Design 136
 4.1.3 Scenario Definition 137
 4.1.4 Evaluation ... 145
 4.1.5 Reference Notes and Concluding Remarks 158
4.2 Travel Demand Models 159
 4.2.1 Basic Definitions and Notations 159
 4.2.2 Models for Transport Planning 160
 4.2.3 Characteristics of Travel Demand Models 162
 4.2.4 Model Specification 170
 4.2.5 Basic Model Formulation 174
 4.2.6 The Process for Model Calibration and Validation .. 177
 4.2.7 Reference Notes and Concluding Remarks 179
4.3 Psychological Factors Affecting Passenger Behaviour 179
 4.3.1 Some Basic Notions About Psychology 179
 4.3.2 Prospect Theory: A Descriptive Approach to Decision-Making ... 183
 4.3.3 Application of Prospect Theory in the Transportation Field ... 192
 4.3.4 Modelling Human Behaviour: Transtheoretical Model of Change .. 196
 4.3.5 Reference Notes and Concluding Remarks 197
4.4 Discrete Choice Models 198
 4.4.1 The Logit Model 200
 4.4.2 The Nested Logit Model 205
 4.4.3 The Mixed Logit Model 207
 4.4.4 Kirchhoff Model and Box–Cox Model 209
 4.4.5 Model Estimation and Test 211
 4.4.6 Reference Notes and Concluding Remarks 214
4.5 Mode and Route Choice 215
 4.5.1 Factors that Influence Mode and Route Choices 215
 4.5.2 Route Choice Set Generation Methods 216
4.5.3 Route Choice Models with Correlation 218
4.5.4 Urban Case Study: Santiago de Chile Transit System 222
4.5.5 Long-Distance Case Study: Stockholm Regional Buses 225
4.5.6 Reference Notes and Concluding Remarks 230

References 231

5 From Transit Systems to Models: Data Representation and Collection 235
Klaus Noekel, Guido Gentile, Efthia Nathanail and Achille Fonzone
5.1 Input: Demand and Supply 236
5.1.1 Travel Demand and Its Segmentation 236
5.1.2 Transport Network and Transit Services 240
5.1.3 The Example Network 251
5.1.4 Reference Notes and Concluding Remarks 252
5.2 Output: Indicators 254
5.2.1 Introduction 254
5.2.2 Purpose of Indicators and Selection Criteria 255
5.2.3 Definition of Indicators 256
5.2.4 Displaying the Output 261
5.2.5 Reference Notes and Concluding Remarks 262
5.3 ITS Data for Transit Assignment 263
5.3.1 Data from Transit ITS 264
5.3.2 ITS and Traditional Data Collection Techniques 267
5.3.3 ITS Data Applications 270
5.3.4 O–D Matrix Estimation by Traffic Counts 275
5.3.5 Perspectives 279
5.3.6 Reference Notes and Concluding Remarks 281
5.3 References 282

Part III The Theory of Transit Assignment - Guido Gentile

6 The Theory of Transit Assignment: Basic Modelling Frameworks 287
Guido Gentile, Michael Florian, Younes Hamdouch, Oded Cats and Agostino Nuzzolo
6.1 Formulating and Solving Transit Assignment 288
6.1.1 Schedule-Based Versus Frequency-Based Services and Models 288
6.1.2 Multiclass Flows and Performances on Multimodal Networks 290
6.1.3 Strategies and Hyperpaths 292
6.1.4 Sequential Route Choice and Flow Propagation 296

References 297
6.1 Sequential Model and Strategies

<table>
<thead>
<tr>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1.5 Sequential Model and Strategies</td>
</tr>
<tr>
<td>6.1.6 Shortest Paths and All-or-Nothing Assignment</td>
</tr>
<tr>
<td>6.1.7 Extension to Shortest Hyperpaths</td>
</tr>
<tr>
<td>6.1.8 Uncongested Assignment Versus User Equilibrium</td>
</tr>
<tr>
<td>6.1.9 Fixed Versus Elastic Demand</td>
</tr>
<tr>
<td>6.1.10 User Equilibrium Versus Day-to-Day Evolution</td>
</tr>
<tr>
<td>6.1.11 Path-Based Versus Arc-Based</td>
</tr>
<tr>
<td>6.1.12 Deterministic Versus Stochastic Route Choice</td>
</tr>
<tr>
<td>6.1.13 Static Versus Dynamic Assignment</td>
</tr>
<tr>
<td>6.1.14 Simulation-Based Versus Analytical Models</td>
</tr>
<tr>
<td>6.1.15 Reference Notes and Concluding Remarks</td>
</tr>
</tbody>
</table>

6.2 Frequency-Based Assignment on Transit Static Networks

<table>
<thead>
<tr>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.2.1 Headway Distributions and Wait Times</td>
</tr>
<tr>
<td>6.2.2 The Static Transit Network</td>
</tr>
<tr>
<td>6.2.3 Arcs Travel Times and Costs</td>
</tr>
<tr>
<td>6.2.4 Waiting Costs in the Case of Known Timetable and Regular Service</td>
</tr>
<tr>
<td>6.2.5 Route Choice and Uncongested Assignment</td>
</tr>
<tr>
<td>6.2.6 Criticism of the Non-strategic Approach</td>
</tr>
<tr>
<td>6.2.7 Reference Notes and Concluding Remarks</td>
</tr>
</tbody>
</table>

6.3 Scheduled-Based Assignment on Transit Space-Time Networks

<table>
<thead>
<tr>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.3.1 The Diachronic Graph</td>
</tr>
<tr>
<td>6.3.2 Travel Costs in the Case of Run Choices</td>
</tr>
<tr>
<td>6.3.3 Travel Costs in the Case of Line Choices</td>
</tr>
<tr>
<td>6.3.4 Route Choice and Uncongested Assignment</td>
</tr>
<tr>
<td>6.3.5 Branch and Bound Algorithm for Choice-Set Generation</td>
</tr>
<tr>
<td>6.3.6 Computation of Shortest Tree on the Space-Time Network</td>
</tr>
<tr>
<td>6.3.7 Departure Time Choice</td>
</tr>
<tr>
<td>6.3.8 Networks with Mixed Schedule-Based and Frequency-Based Services</td>
</tr>
<tr>
<td>6.3.9 Reference Notes and Concluding Remarks</td>
</tr>
</tbody>
</table>

6.4 Macroscopic Models for Dynamic Transit Assignment

<table>
<thead>
<tr>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.4.1 Fixed-Point Formulations of Arc-Based Dynamic Assignment</td>
</tr>
<tr>
<td>6.4.2 Propagation of Continuous Flows</td>
</tr>
<tr>
<td>6.4.3 Temporal Layer Formulation of Route Choice</td>
</tr>
<tr>
<td>6.4.4 Extension to Dynamic Hyperarcs</td>
</tr>
<tr>
<td>6.4.5 Representation of Service Frequency as a Continuous Vehicle Flow</td>
</tr>
<tr>
<td>6.4.6 Reference Notes and Concluding Remarks</td>
</tr>
</tbody>
</table>
6.5 Simulation-Based Models for Transit Assignment 363
6.5.1 The Simulation Approach and Its Advantages 364
6.5.2 Agent-Based Models 365
6.5.3 Traveller Cognitive Process 373
6.5.4 Mesoscopic Models for Schedule-Based Simulation .. 377
6.5.5 Reference Notes and Concluding Remarks 382

References ... 384

7 The Theory of Transit Assignment: Demand and Supply Phenomena ... 387
Guido Gentile, Klaus Noekel, Jan-Dirk Schmöcker,
Valentina Trozzi and Ektoras Chandakas

7.1 Strategies and Information .. 388
7.1.1 Optimal Strategies with Exponential Headways 389
7.1.2 Regular Headways and Sequential Observation 398
7.1.3 Sequential Observation and Elapsed Time 402
7.1.4 Parallel Observation 407
7.1.5 Comparison Among Different Waiting Models 409
7.1.6 When to Alight? Where to Continue? 411
7.1.7 Optimal Strategies on Diachronic Graphs 413
7.1.8 Reference Notes and Concluding Remarks 414

7.2 Discomfort: Seating and Crowding 416
7.2.1 Overcrowding Congestion 417
7.2.2 Seat Availability ... 420
7.2.3 Static Equilibrium Models with Discomfort Cost Functions .. 424
7.2.4 Reference Notes and Concluding Remarks 427

7.3 Passenger Queuing ... 428
7.3.1 Queuing Congestion 429
7.3.2 Effective Frequency 432
7.3.3 Fail-to-Board Probability 435
7.3.4 Bottleneck Model with Variable Exit Capacity 439
7.3.5 Impulse Flows and Run Capacity Constraint 444
7.3.6 Reference Notes and Concluding Remarks 447

7.4 Service Perturbations .. 448
7.4.1 Supply and Demand Uncertainties 450
7.4.2 Distribution of Boarding Passengers and Dwell Times .. 452
7.4.3 Emergence of Headway Irregularity and Vehicle Bunching .. 454
7.4.4 Dwelling Congestion 457
7.4.5 Impacts of Dwell Times on the Service Frequency 459
7.4.6 Reliability and Robustness 461
7.4.7 Reference Notes and Concluding Remarks 465
7.5 Fares .. 468
 7.5.1 The Question of Whether Fares Need to Be Included 469
 7.5.2 Transit Route Choice Including Fares 470
 7.5.3 Representation of Complex Fares via Journey Levels 472
 7.5.4 Reference Notes and Concluding Remarks 476
References ... 477

Part IV Applications and Future Developments - Fabien Leurent

8 Applications and Future Developments: Modelling the Diversity and Integration of Transit Modes 485
 Ingmar Andreasson, Fabien Leurent, Francesco Corman and Luigi dell’Olio

8.1 On Line-Haul Operations .. 486
 8.1.1 Different Modes .. 487
 8.1.2 In-Vehicle Passenger Traffic 488
 8.1.3 Passengers on Platform 489
 8.1.4 On Dwell Time, Service Frequency, and Run Delay 490
 8.1.5 Traffic Interactions Along a Transit Line 491

8.2 Service Coordination .. 491
 8.2.1 Transfer Optimization ... 492
 8.2.2 Matched Transfers ... 492
 8.2.3 Coordinated Timetables .. 493

8.3 Modelling Demand Responsive and Paratransit 495
 8.3.1 Feeder and Shuttle Services 496
 8.3.2 Bus-on-Demand and Special Transportation Services 496
 8.3.3 Taxi .. 497
 8.3.4 Personal Rapid Transit ... 498
 8.3.5 The Dial-a-Ride Problem (DARP) 504

8.4 Integrated Modelling of Travel Demand and Transit Operations .. 507
 8.4.1 Bi-Level Optimization of Line-Haul Transit Networks 508
 8.4.2 Integrated Modelling of Multimodal Networks 510
 8.4.3 Combination of Assignment with Control and Design 512
References ... 517
9 Applications and Future Developments: Modeling
Software and Advanced Applications ... 521
Ektoras Chandakas, Fabien Leurent and Oded Cats
9.1 Commercial Software as a Bridge Between Theory
and Practice ... 522
9.1.1 An Overview of Commercial Software. 523
9.1.2 System Representation ... 526
9.1.3 Traffic Simulation ... 531
9.1.4 Application Frameworks ... 537
9.2 Advanced Applications and Research Prototypes 541
9.2.1 Simulation of Greater Paris Using the CapTA
Model ... 541
9.2.2 Agent-Based Simulation of the Stockholm
Network Using BusMezzo ... 552
References ... 559

10 Applications and Future Developments: Future Developments
and Research Topics ... 561
Ingmar Andreasson, Fabien Leurent and Rosaldo Rossetti
10.1 A Forward Analysis of Public Transportation
in the Information Era ... 562
10.1.1 Line-Haul Public Transportation
in the Information Era .. 564
10.1.2 The Diversification of Public Transportation
Modes .. 568
10.1.3 Toward a Generalized Pooling of Transportation
Means? .. 571
10.1.4 Autonomous Vehicles .. 576
10.1.5 What Prospects for Urban Mobility
and Multimodality? ... 579
10.2 Research Topics on Transit Modeling................................. 585
10.2.1 Background ... 586
10.2.2 Individual Behavior, from Situations to Decisions
Passing by Gestures. ... 588
10.2.3 Demand Patterns .. 592
10.2.4 Flow Physics and Traffic Management at the Very
Local Scale ... 597
10.2.5 Line Traffic, Management, and Economics 602
10.2.6 Line-Haul Network .. 606
10.2.7 Pooled Transit Services (PTS) 613
10.2.8 Multimodal Transit System ... 616
10.3 System Simulation and Augmented Reality 619
10.3.1 The Modeling Toolbox 620
10.3.2 Augmenting Reality 623
10.3.3 Toward What Typical Applications for Assignment Models? 627
10.3.4 Toward Urban Mobility Living Labs? 630
References .. 641
Modelling Public Transport Passenger Flows in the Era of Intelligent Transport Systems
COST Action TU1004 (TransITs)
Gentile, G.; Noekel, K. (Eds.)
2016, XXXVII, 641 p. 140 illus., 102 illus. in color., Hardcover
ISBN: 978-3-319-25080-9