Contents

1 Introduction ... 1
1.1 Underpotential Deposition: A Successful Misnomer? 1
1.2 The Magic World of Metal Underpotential Deposition 2
1.3 Pre-history and Rise of upd . 9
1.4 Upd Under the Loupe: Then and Now . 12
References . 13

2 Experimental Techniques and Structure of the Underpotential Deposition Phase .. 17
2.1 Introduction .. 17
2.2 Cyclic Voltammetry ... 18
2.3 Radiotracer Methods ... 23
2.4 Potential Step .. 26
2.5 Equilibrium-Coverage-Potential Isotherms 28
2.6 Twin-Electrode Thin-Layer .. 29
2.7 Rotating Ring Disk Electrode ... 33
2.8 Electrochemical Quartz Crystal Microbalance 37
2.9 Scanning Probe Microscopy ... 40
2.9.1 Scanning Tunneling Microscopy 40
2.9.2 Atomic Force Microscopy 47
2.11 X–Ray Absorption Fine Structure 52
2.12 In-Situ Surface Differential X-Ray Diffraction 53
2.13 Transmission X-Ray Surface Differential Diffraction 54
2.14 In-Situ Surface X-Ray Scattering 55
2.15 Grazing Incidence X-Ray Diffraction 55
2.16 In Situ Infrared Spectroscopy 58
2.17 Fourier Transform Infrared Spectroscopy 58
3 Phenomenology and Thermodynamics of Underpotential Deposition

3.1 Phenomenology and a First Thermodynamic Approach to Underpotential Deposition 91
3.2 Introducing the Influence of Solvent in Underpotential Deposition Modeling ... 96
3.3 Underpotential Deposition on Single Crystal Surfaces .. 97
3.4 Nernstian-like Formalisms: Underpotential Deposition in the Framework of the Electrosorption Valency 100
 3.4.1 Electrical Double Layer Effects .. 102
 3.4.2 Solvent Effects .. 102
 3.4.3 Determination of the Electrosorption Valency 106
3.5 Thermodynamics of Underpotential Deposition Using the Formalism of Ideal Polarizable Electrodes 109
 3.5.1 Formalism .. 109
 3.5.2 Application to Sulfate Coadsorption in the Case of Cu Underpotential Deposition on Au(111) 111
3.6 Coverage Isotherms and Phase Transitions ... 116
3.7 A Thermodynamic Formulation Oriented to Theoretical Modeling of Underpotential Deposition as a Phase Transition, Including Ion Coadsorption, Solvent and Double Layer Effects .. 146
References ... 156

4 Applications of Underpotential Deposition on Bulk Electrodes as a Model System for Electrocatalysis

4.1 Introduction .. 163
4.2 Catalysis of the Electrooxidation of Some C1 Molecules on Pure Pt Surfaces and Bimetallic Catalysis 164
 4.2.1 CO .. 164
 4.2.2 CH₃OH ... 172
5 Modelling of Underpotential Deposition on Bulk Electrodes

5.1 Introduction

5.2 Application of Quantum Mechanical Methods to Underpotential Deposition

5.2.1 Quantum Mechanical Modeling of Underpotential Deposition Previous to the Application of Density Functional Theory

5.2.2 Early Applications of Density Functional Theory to Underpotential Deposition

5.2.3 Density Functional Theory Calculations for Underpotential Deposition Systems

5.2.4 Relationship Between Excess Binding Energy and Surface Energy

5.2.5 Density Functional Theory Calculations for Expanded Monolayers

5.2.6 Analysis of Substrate and Adsorbate Interaction Energy

5.2.7 Growth of Deposits Underpotentially formed on Stepped Surfaces

5.3 A Statistical-Mechanical Approach to Underpotential Deposition

5.4 Monte Carlo Methods

5.4.1 Introduction and Generalities

5.4.2 Off-Lattice Monte Carlo

5.4.3 Lattice Monte Carlo

5.4.4 Kinetic Monte Carlo Applications

5.5 Miscellaneous Models Applied to Underpotential Deposition

6 Underpotential Deposition and Related Phenomena at the Nanoscale: Theory and Applications
6.2.1 Reduction Mechanism .. 280
6.2.2 Strong Versus Weak Reducing Agents 283
6.2.3 Formation Mechanism of Monoatomic Nanoparticles 284
6.2.4 Statistical Mechanic Formulation on the Stability and
Metastability of Nanoparticles 290
6.2.5 Bimetallic Nanoparticles 294
6.2.6 Deposition Mechanisms at the Nanoscale 295
6.3 Towards Electrochemical Control in Synthetic Routines for
Free-Standing Nanoparticles 296
6.4 Thermodynamics of Underpotential Deposition at
the Nanoscale .. 301
6.5 Atomistic Model for Underpotential Deposition on
Nanoparticles ... 307
6.6 Strengthening and Weakening of Underpotential Deposition at
the Nanoscale. Underpotential Deposition-Overpotential Deposition
Transition .. 309
6.7 Experimental Research ... 313
6.7.1 Seed-Mediated Growth 313
6.7.2 Shape Control of Nanoparticles Synthesis by
Underpotential Deposition 317
6.7.3 Galvanic Replacement and Underpotential Deposition 318
6.7.4 Hollow Nanoparticles Through Galvanic Replacement ... 322
6.7.5 Nanoparticles Growth Inside Dendrimers 325
References .. 331

7 What Is Coming Next? .. 335
7.1 Underpotential Deposition as a Precision Design Tool 335
7.2 Towards an Accurate and First-Principles Modeling of Metal
Underpotential Deposition/Dissolution 338
7.3 Computer Experiments .. 340
7.4 Curvature Effects in Underpotential Deposition at the
Nanoscale ... 341
7.5 Role of Protective Molecules in Underpotential Deposition 341
7.6 New Models of Nucleation and Growth at the Nanoscale 343
7.7 Underpotential Deposition Voltammograms: What About the
Spikes? ... 345
7.8 The Puzzling Occurrence of Low-Density Structures and the Need
to Improve the Underpotential Deposition Modeling to Consider
Electrochemical Features of the System 346
References .. 347

About the Authors ... 349
About the Editor .. 353
Index .. 355