Contents

1 Introduction ... 1
1.1 Correlated Many-Particle Systems 2
1.2 Thermodynamic Properties of Correlated Systems 9
1.3 Ultrafast Nonequilibrium Phenomena 12
1.3.1 Dynamics of Isolated Systems 13
1.3.2 Interaction of Matter with Short Laser Pulses 14
1.3.3 Overview of Relaxation Processes 18
1.4 The Boltzmann Equation–Successes and Failure 20
1.4.1 An Elementary Introduction to the Boltzmann Equation ... 20
1.4.2 Unphysical Ultrafast Relaxation in Charged Particle Systems 23
1.5 Improved Theoretical Concepts 24
1.5.1 Outline of this Book .. 26
1.6 Problems ... 27

2 The Method of Reduced Density Operators 29
2.1 Density Operator. Von Neumann Equation 29
2.2 BBGKY-Hierarchy ... 32
2.2.1 Reduced Density Operators. Equations of Motion 32
2.2.2 Conservation Laws ... 37
2.3 Basic Representations of the Hierarchy 41
2.3.1 Coordinate Representation 41
2.3.2 Wigner Representation ... 43
2.3.3 Classical Limit and Quantum Corrections 45
2.3.4 Spatially Homogeneous Systems. Momentum Representation 46
6.3 Markov Limit ... 132
6.4 Non-Markovian Quantum Landau Equation
with Exchange Renormalization and Time-Dependent
Fields ... 134
6.5 Problems ... 139

7 Non-Markovian Kinetic Equations with Selfenergy 141
7.1 *Selfenergy in Density Operator Approach 142
7.2 Renormalized Binary Correlation Operator 146
7.3 Non-Markovian Quantum Landau Equation
with Selfenergy .. 148
 7.3.1 Properties of the Landau Equation.
 Memory Effects .. 149
 7.3.2 Dynamics of Physical Observables. Energy
 Conservation ... 154
 7.3.3 Markov Limit and Corrections. Retardation
 Expansion .. 158
 7.3.4 *Approximations for the Selfenergy 163
7.4 *Discussion of the Selfenergy Concept. Relation
 to Green Functions Results 166
7.5 Problem ... 169

8 Properties of the Quantum Kinetic Equation 171
8.1 Markovian Dynamics of Macroscopic Observables 172
8.2 Irreversibility. H-Theorem. Equilibrium Solution
 of the Markovian Kinetic Equation 173
8.3 Equilibrium Correlations .. 176
8.4 Non-Markovian Dynamics of Macroscopic Observables 177
8.5 Total Energy Conservation in Non-Markovian Kinetics 179
8.6 H-Theorem in Non-Markovian Kinetics 180
8.7 Problems ... 182

9 Strong Coupling Effects. Ladder (T-Matrix) Approximation 183
9.1 Generalized Binary Collision Approximation 184
9.2 *Selfenergy in Ladder (T-Matrix) Approximation 185
9.3 Correlation Operator in Binary Collision Approximation 187
 9.3.1 Propagators and Scattering Quantities 187
 9.3.2 Moller Operators and T-Operators 190
 9.3.3 Correlation Operator in Binary Collision
 Approximation ... 192
 9.3.4 *Gradient Expansion of g_{12} and Physical
 Observables .. 195
 9.3.5 *Recovery of the Generalized Kadanoff-Baym
 Ansatz ... 198
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.4</td>
<td>Collision Integral with Memory Effects</td>
<td>199</td>
</tr>
<tr>
<td>9.5</td>
<td>Kinetic Equation in First Order Gradient Expansion</td>
<td>202</td>
</tr>
<tr>
<td>9.6</td>
<td>Numerical Results and Discussion</td>
<td>206</td>
</tr>
<tr>
<td>9.6.1</td>
<td>Markovian T-Matrix Scattering Rates</td>
<td>207</td>
</tr>
<tr>
<td>9.6.2</td>
<td>Summary and Comments on the T-Matrix Approximation</td>
<td>209</td>
</tr>
<tr>
<td>9.6.3</td>
<td>Numerical Results for Lattice Systems</td>
<td>209</td>
</tr>
<tr>
<td>10</td>
<td>Random Phase Approximation</td>
<td>211</td>
</tr>
<tr>
<td>10.1</td>
<td>Generalized Polarization Approximation: Selfenergy</td>
<td>212</td>
</tr>
<tr>
<td>10.2</td>
<td>Dynamical Screening in Nonequilibrium</td>
<td>216</td>
</tr>
<tr>
<td>10.3</td>
<td>Non-Markovian Balescu-Lenard Equation</td>
<td>221</td>
</tr>
<tr>
<td>10.3.1</td>
<td>Properties of the Non-Markovian Balescu-Lenard Equation: Markov Limit</td>
<td>222</td>
</tr>
<tr>
<td>10.3.2</td>
<td>Correlation Energy in RPA</td>
<td>226</td>
</tr>
<tr>
<td>10.3.3</td>
<td>Short-Time Behavior: Screening Buildup</td>
<td>227</td>
</tr>
<tr>
<td>10.4</td>
<td>Problem</td>
<td>229</td>
</tr>
<tr>
<td>11</td>
<td>Dynamically Screened Ladder Approximation</td>
<td>231</td>
</tr>
<tr>
<td>11.1</td>
<td>Generalized Screened Ladder Approximation. Selfenergy</td>
<td>232</td>
</tr>
<tr>
<td>11.1.1</td>
<td>Limiting Cases of the Screened Ladder Approximation</td>
<td>235</td>
</tr>
<tr>
<td>11.2</td>
<td>Gould–DeWitt Approximation</td>
<td>236</td>
</tr>
<tr>
<td>12</td>
<td>Charged Many—Particle Systems in Electromagnetic Fields. Generalized Bloch Equations</td>
<td>237</td>
</tr>
<tr>
<td>12.1</td>
<td>Field-Matter Interaction</td>
<td>238</td>
</tr>
<tr>
<td>12.2</td>
<td>Field Effects on the Distribution and the Propagators</td>
<td>242</td>
</tr>
<tr>
<td>12.3</td>
<td>Interaction of Optical Fields with Multiband Systems</td>
<td>249</td>
</tr>
<tr>
<td>12.4</td>
<td>Bloch Representation of the First Hierarchy Equation</td>
<td>252</td>
</tr>
<tr>
<td>12.5</td>
<td>*Bloch Representation of the Solution $g_{12}(t)$</td>
<td>259</td>
</tr>
<tr>
<td>12.6</td>
<td>*Correlation Operator, Non-Markovian Collision Integral and Selfenergy in an Electromagnetic Field</td>
<td>264</td>
</tr>
<tr>
<td>12.7</td>
<td>*Non-Markovian Bloch Equations Beyond the Static Born Approximation</td>
<td>267</td>
</tr>
<tr>
<td>12.8</td>
<td>Problem</td>
<td>270</td>
</tr>
<tr>
<td>13</td>
<td>Nonequilibrium Green Functions Approach to Field-Matter Dynamics</td>
<td>271</td>
</tr>
<tr>
<td>13.1</td>
<td>Introduction</td>
<td>272</td>
</tr>
<tr>
<td>13.2</td>
<td>Basic Concepts of Relativistic Quantum Electrodynamics</td>
<td>273</td>
</tr>
<tr>
<td>13.2.1</td>
<td>Field Operators of the Maxwell Field</td>
<td>274</td>
</tr>
<tr>
<td>13.2.2</td>
<td>Relativistic Field Operators for Fermions</td>
<td>274</td>
</tr>
<tr>
<td>13.2.3</td>
<td>Statistical Description in Nonequilibrium</td>
<td>276</td>
</tr>
<tr>
<td>13.2.4</td>
<td>Green Functions for Photons and Charge Carriers</td>
<td>278</td>
</tr>
</tbody>
</table>
13.3 Relativistic Keldysh-Kadanoff-Baym Equations for Particles and Photons .. 282
13.4 Approximations for the Selfenergies ... 284
 13.4.1 Expansion in Terms of G_0 and D ... 285
 13.4.2 Expansion in Terms of G and D .. 288
 13.4.3 Adiabatic Approximation for the Electromagnetic Field 288
13.5 Nonrelativistic Keldysh-Kadanoff-Baym Equations 290
 13.5.1 Nonrelativistic Limit. Pauli Equation .. 290
 13.5.2 Green Functions for Carriers, Photons and Plasmons 292
 13.5.3 Keldysh-Kadanoff-Baym Equations for Carriers, Plasmons and Photons 295
13.6 Particle Keldysh-Kadanoff-Baym Equations. Properties and Approximations .. 295
 13.6.1 Approximations for the Selfenergy ... 297
 13.6.2 Properties of the Keldysh-Kadanoff-Baym Equations 299
 13.6.3 Numerical Results ... 301
13.7 Interband KBE .. 304
 13.7.1 Two-Time Semiconductor Bloch Equations 305
 13.7.2 Illustration: NEGF-Simulation for Laser Excitation of Electrons in a Harmonic Oscillator 307
 13.7.3 Numerical Results for Ultrafast Relaxation of Femtosecond-Laser Excited Semiconductors 310
 13.7.4 Computing Optical Absorption Via Solution of the Interband KBE 313
13.8 Nonequilibrium KBE-Approach to Equilibrium Response Properties 316
 13.8.1 Response Properties in Lowest Order (Linear Response) 317
 13.8.2 Relation Between the Two-Particle Kernel Ξ and the KBE-Selfenergy Σ 318
 13.8.3 Interband Approach to Plasma Oscillations of the Correlated Electron Gas 319
 13.8.4 Optical Absorption of Atoms and Molecules. Electronic Double Excitations 321
13.9 Kinetic Equations for Single-Time Functions. Comparison to Density Operators .. 323
13.10 Build Up of Dynamical Screening ... 328
 13.10.1 Theoretical Approaches to the Screening Dynamics 328
 13.10.2 Femtosecond Buildup of the RPA Dielectric Function 329
Quantum Kinetic Theory
Bonitz, M.
2016, XVIII, 406 p. 61 illus., 52 illus. in color., Hardcover
ISBN: 978-3-319-24119-7