Contents

1 **General Information on Tsunami Waves, Seaquakes, and Other Catastrophic Phenomena in the Ocean**
 1.1 Tsunami: Definition of Concepts 1
 1.2 Manifestations of Tsunami Waves on Coasts 2
 1.3 Tsunami Magnitude and Intensity 5
 1.4 Tsunami Warning Service: Principles and Methods 11
 1.5 Tsunami Catalogs and Databases 16
 1.6 Seaquakes: General Ideas 20
 1.7 Hydroacoustic Signals in the Case of Underwater Earthquakes ... 24
 References .. 27

2 **Source of a Tsunami of Seismotectonic Origin**
 2.1 The Main Parameters and Secondary Effects 35
 2.2 Okada Formulae ... 36
 2.3 Rectangular Fault: Relationship Between the Parameters of a Tsunami Source and the Earthquake Moment Magnitude and Depth ... 51
 2.4 Properties of Coseismic Deformations of the Oceanic Bottom According to Data on the Slip Structure at Tsunamigenic Earthquake Sources 55
 2.5 Distribution of Tsunami Sources in Space and Time 67
 References .. 77

3 **Hydrodynamic Processes at the Source of a Tsunami of Seismotectonic Origin: Incompressible Ocean**
 3.1 Hydrodynamic Description of Tsunami Waves: The Two Principal Approximations ... 84
 3.1.1 General Formulation of the Hydrodynamic Problem 89
 3.1.2 The Long-Wave Theory 92
 3.1.3 The Potential Theory 95

References .. 100
3.2 General Solution of the Problem of Excitation of Gravitational
Waves in a Layer of Incompressible Liquid by Deformations
of the Basin Bottom .. 98
3.2.1 Cartesian Coordinates 98
3.2.2 Cylindrical Coordinates 101
3.3 Plane Problems of Tsunami Excitation by Deformations
of the Basin Bottom ... 104
3.3.1 Construction of the General Solution 105
3.3.2 Piston and Membrane Displacements 109
3.3.3 Running and Piston-Like Displacements 119
3.3.4 The Oscillating Bottom 126
3.4 Generation of Tsunami Waves and Peculiarities of the Motion
of Ocean Bottom at the Source 132
3.5 Calculation of the Initial Elevation at the Tsunami Source 144
3.6 Residual Hydrodynamic Fields that Accompany the Generation
of a Tsunami by an Earthquake 156
3.6.1 Definition of Concepts 156
3.6.2 Basic Mathematical Model for a Homogeneous Ocean ... 157
3.6.3 The Properties of Residual Fields in the Case
of a Homogeneous Ocean of Constant Depth:
Analysis of Analytical Solutions 159
3.6.4 Features of Residual Fields Due to the Existence
of Stable Stratification .. 164
3.6.5 Methods for Calculation of Residual Potential Fields
for Real Events .. 171
3.6.6 Estimation of Residual Horizontal Displacements
of Water Particles Caused by the Tsunamigenic
Earthquake of March 11, 2011 172
References .. 175

4 Role of the Compressibility of Water and of Nonlinear Effects
in the Formation of Tsunami Waves 181
4.1 Excitation of Tsunami Waves with Regard
to the Compressibility of Water 182
4.1.1 Preliminary Estimates 182
4.1.2 Hydrodynamic Formulation of the Problem:
Analytic Solutions ... 186
4.1.3 Piston and Membrane Displacements 193
4.1.4 The Running Displacement 198
4.1.5 Peculiarities of Wave Excitation in a Basin
of Variable Depth ... 202
4.2 Observations of Tsunamigenic Earthquakes Using Ocean
Bottom Stations .. 210
4.2.1 Character of the Water Layer Response to Bottom
Oscillations in Dependence of Frequency 211
4.2.2 The 2003 Tokachi-Oki Earthquake 216
4.2.3 The 2011 Tohoku-Oki Earthquake 226
4.3 Nonlinear Mechanism of Tsunami Generation 240
 4.3.1 Base Mathematical Model 240
 4.3.2 Nonlinear Mechanism of Tsunami Generation
 by Bottom Oscillations in an Incompressible Ocean 244
 4.3.3 Nonlinear Tsunami Generation Mechanism
 with Regard to the Compressibility of Water 252
References ... 258

5 The Physics of Tsunami Formation by Sources of Noneismic
Origin ... 263
 5.1 Tsunami Generation by Landslides 264
 5.2 Tsunami Excitation Related to Volcanic Eruptions 276
 5.3 Meteotsunamis .. 283
 5.4 Cosmogenic Tsunamis .. 294
References ... 305

6 Propagation of a Tsunami in the Ocean and Its Interaction
with the Coast .. 311
 6.1 Traditional Ideas Concerning the Problem of Tsunami
 Propagation .. 312
 6.2 Numerical Models of Tsunami Propagation 329
 6.3 Tsunami Run-Up on the Coast 345
References ... 352

7 Methods of Tsunami Wave Registration 359
 7.1 Coastal and Deepwater Measurements of Sea Level 360
 7.2 The Investigation of Coasts After Tsunamis:
 Tsunami Deposits .. 366
 7.3 Tsunami Detection in the Open Ocean by Satellite
 Altimetry ... 373
 7.4 Tsunami Wave Manifestations in the Ionosphere 381
References ... 384
Physics of Tsunamis
Levin, B.W.; Nosov, M.A.
2016, XIII, 388 p. 167 illus., 114 illus. in color., Hardcover
ISBN: 978-3-319-24035-0