Contents

1 Introduction ... 1
References ... 4

2 Basics of Raman Scattering (RS) Spectroscopy 7
2.1 Short History of Raman Effect 7
2.2 Basic Theory of RS .. 8
2.3 Molecular Vibrations and Their Raman Activity 12
2.4 Raman Experiment ... 15
2.5 Raman Spectroscopy for Biomolecular Studies 17
References ... 18

3 Basics of Surface-Enhanced Raman Scattering (SERS) 21
3.1 SERS Mechanisms .. 21
3.1.1 EM Mechanism of SERS 22
3.1.2 Chemical (Molecular) Mechanism of SERS 24
3.2 SERS EFs .. 26
3.3 SM-SERS .. 28
3.4 SERS-Active Substrates 30
3.4.1 Metallic NP Hydrosols................................. 30
3.4.2 NPs and Nanostructures on Planar Supports
Prepared by Bottom-Up Techniques 34
3.4.3 Nanostructures Fabricated Using Nanolithographic
(Top-Down) Techniques 37
3.4.4 Highly Ordered Metallic Nanostructures Fabricated
by Template Techniques 39
3.4.5 Commercially Available Substrates 47
3.5 Practical Aspects of SERS 48
3.6 Related Enhanced Techniques 50
References ... 53
4 Bioanalytical SERS Applications

4.1 Quantitative SERS Methods
- 4.1.1 SERS-Active Substrates for Quantitative SERS
- 4.1.2 Internal Intensity Standards for Quantitative SERS
- 4.1.3 Sensitivity and Specificity of SERS Sensor

4.2 SERS Sensing of Pharmaceuticals and Drugs
- 4.2.1 SERS Sensing of Pharmaceuticals
- 4.2.2 SERS Sensing of Drugs

4.3 SERS Sensing of Pollutants, Food Contaminants and Food Additives
- 4.3.1 SERS Sensing of Pollutants and Pesticides
- 4.3.2 SERS Sensing of Melamine
- 4.3.3 SERS Sensing of Food Colourants

4.4 SERS Identification of Biowarfare Agent Anthrax

5 Biomolecular SERS Applications

5.1 SERS Biomolecular Detection Schemes

5.2 Nucleic Acids (NAs) and Their Components
- 5.2.1 Intrinsic Detection of NAs
- 5.2.2 Intrinsic NA Detection Using Hybridization
- 5.2.3 Intrinsic NA Detection Using TERS
- 5.2.4 Extrinsic Detection of NAs
- 5.2.5 Extrinsic NA Detection Using Hybridization

5.3 Proteins and Their Components
- 5.3.1 Intrinsic Detection of Proteins
- 5.3.2 Extrinsic Detection of Proteins
- 5.3.3 Immunoassays

5.4 Lipids and Membranes

6 SERS Investigations of Cells, Viruses and Microorganisms

6.1 Intracellular SERS Investigations
- 6.1.1 Intracellular SERS Detection Strategies
- 6.1.2 Delivery of the Metallic NPs Inside the Cells
- 6.1.3 Chemical Probing in Cells by Intrinsic SERS Spectra
- 6.1.4 Chemical Probing in Cells Using SERS Tags with RRMs
- 6.1.5 Endosomal pH Monitored by SERS
- 6.1.6 Intracellular SERS Using Tip-like Substrates
- 6.1.7 Experimental Aspects of Intracellular SERS Studies

6.2 Detection and Identification of Viruses and Microorganisms
- 6.2.1 Detection and Identification of Viruses

References
6.2.2 Detection and Identification of Bacteria 142
6.2.3 Detection and Identification of Yeasts 145
References ... 145

7 Medical Applications of SERS .. 149
 7.1 Glucose Sensing In Vitro .. 149
 7.2 Pathogen Sensing In Vitro 151
 7.2.1 Pathogen Sensing Using NA Hybridization 152
 7.2.2 Pathogen Sensing Using Immunoassays 157
 7.2.3 Direct Bacterial Identification in Human Body Fluids .. 159
 7.3 SERS Cancer Diagnostics In Vitro 162
 7.3.1 Cancer Diagnostics Using NA Hybridization 163
 7.3.2 Cancer Diagnostics Using Immunoassays 166
 7.3.3 Direct Cancer Diagnostics from Blood Plasma 169
 7.3.4 Direct Cancer Diagnostics from Urine and Saliva ... 173
 7.4 SERS In Vitro Diagnostics of Other Diseases 175
 7.5 SERS-Based Medical Therapy and Theranostics In Vitro 179
 7.6 SERS Ex Vivo: Tissue Diagnostics and Histology 185
 7.7 SERS Medical Applications In Vivo 187
 7.7.1 In Vivo Glucose Sensor 187
 7.7.2 In Vivo Imaging and Tumour Targeting 189
 7.7.3 Clinical Utility of SERS 195
 7.7.4 Intracellular SERS Monitoring of Drug Release In Vivo 200
 7.7.5 Toxicity Issue .. 202
 References ... 202

8 Conclusions and Outlook ... 213

Index ... 219
Surface-Enhanced Raman Spectroscopy
Bioanalytical, Biomolecular and Medical Applications
Procházka, M.
2016, XVI, 221 p. 78 illus., 27 illus. in color., Hardcover
ISBN: 978-3-319-23990-3