Near the end of one of the most famous speeches in American history, Abraham Lincoln made reference to “government of the people, by the people, for the people” [5]. In a similar vein, a text about physics and the human body could cover “physics of the body, by the body, and for the body,” but perhaps that would be too broad. Our main focus in this second edition is still the physics of the body, namely the physics of physiology, and the text is again largely organized by topics in physiology. There is still a strong emphasis on modeling physiology. As noted in the excellent book by Rideout [7], general modeling in physiology includes that of momentum (such as blood flow), mass (oxygen, carbon dioxide, and so on in the blood), energy (heat flow), and information (signals in nerves, hormones in the bloodstream) [7]. Models coupling multiple systems are also important. (After all, we are all strongly coupled multiple physiological systems, which are, of course, ultimately determined by physics.) We will still confine ourselves to the more physical and less chemical aspects of physiology modeling; chemical modeling is addressed well elsewhere [1, 2, 3, 4, 6, 7]. Within our focus of “physics of the body,” we have enhanced the discussion of the physics of disease, aging, motion, and the structure and function of muscles, and now explore how balance, metabolism, and the circulatory system change during pregnancy and birth. The physics of the cross-cutting lifecycle events of pregnancy, injuries, diseases and disorders, aging, and dying transcend the topics of any single chapter. They are now overviewed in the new Appendix F; this appendix also describes how to locate discussions of these topics within the main text.

“Physics by the body” includes the physics of common locomotion and that during athletic events and collisions. These topics were addressed in several parts of the first edition, including many problems. They are now discussed in more detail in both the text and the problems. In particular, the physics of motion, kinesiology, and balance [8] are more directly discussed by the analysis of multi-segment modeling and the expanded treatment of the physics of sports. A discussion of human performance of ordinary tasks and at the extremes of athletic competition also transcends the topics of any single chapter and couples many
of them, especially those addressing statics, motion, metabolism, breathing, and blood circulation. To help unify the discussion of athletics, Appendix G has been added to link relevant topics in these chapters and to unify references to different sports activities.

“Physics for the body” includes the physics of measurement analysis and diagnosis and the physics of treatment, much of which is called medical physics. The first edition had some discussion of measurements and diagnosis and essentially none concerning treatment. The presentation of measurement analysis included several methods and a bit about measurement results. A broad overview of this topic is now presented in the new Appendix H, which includes a locator describing where physics analysis of the body is described in the text and problems. Aside from the new brief discussion in Appendix H, treatment is still not addressed in this edition.

This text can still be adapted for use in either lower- or upper-level undergraduate courses, as well as for some low-level graduate courses. It can serve the needs of a primary text for an entire course or as a secondary source, such as through the use of individual chapters. Appendices F, G, and H unite the cross-cutting themes presented in several chapters, and can be used to guide discussion of these topics.

This edition includes numerous additional problems that address the material in the text and explore it in much more detail. Many additional solutions are now provided at the end of the book. The author strongly recommends that you at least peruse the content of the related problems at the end of the chapter when you read any section of the text (even if you do not plan on solving them) because many essential approaches and ideas are covered only in the problems.

Several excellent texts on related topics were cited in the previous edition. In particular, we note again several of the outstanding books describing mathematical models of physiology [1, 2, 3, 4, 6, 7], which are for the most part at a level more advanced than that of this text. Also, of more general interest is the recent “The Story of the Human Body” by Daniel E. Lieberman, which discusses the evolution of the human body and includes extraordinary insights into the structure and function of the bodies of modern-day humans.

The author is indebted to Julio Fernandez, Glenn Fleisig, Joel Gersten, Daniel Herman, Jonathan Herman, Ronald Koder, Jeffrey Kysar, David Lerner, Kristin Myers, Herman Pontzer, and Alejandro Tello, and many others for their comments, suggestions, and insights as he prepared this second edition, to the numerous students, including Sarah Beck, who found errors in the first edition, and to those who helped in preparing the first edition. He would also like to thank the Columbia University Library system for speedy retrieval of reference books and articles (and for letting the author renew books many, many times).

New York, NY
July 2015
Irving P. Herman
References

Preface to the First Edition

Physics explains everything from the beginning to the end of any complete description of the human body. Such a comprehensive discussion should begin with the basic structure of matter, as explained by quantum mechanics—the physics at small dimensions, and end with the mechanics of human motion, the energetics of metabolism, the fluid dynamics of blood flow through vessels, the mechanisms for speaking and hearing, and the optical imaging system we call the eye. All of required combinations of atoms to form the complex molecules and organs of organisms that live and reproduce can be explained by quantum mechanics; however, such explanations can get pretty complex. The fields of chemistry and biology have been developed, in part, to explain the gap between the extremes—the microphysics and macrophysics of organisms such as the human body.

This book focuses mostly on the macrophysics end of the human body. We will assume that atoms form molecules that form cells that form organs. We want to understand the physics of human organs and of humans themselves. We will apply and somewhat extend freshman-level physics to see how the body works. In addition to applying physical concepts to the body, we will try to understand the body from a viewpoint that is more numerical than is often adopted in biological and medical presentations.

One way to characterize this text is by saying what it is and what it is not. It is certainly about the physics of the human body. It is not about human anatomy, although we will need to use some basic anatomical concepts. It is not about human physiology, although it can be called a book about the physics of physiology. It is not a monograph in biomedical engineering per se, although about half of this volume concerns biomechanics, one important area in biomedical engineering. Medical physics is more closely related to health physics, the use of ionizing radiation, imaging, and instrumentation than to the macrophysics of the body. Biophysics concerns how physics can be used to study biology and focuses much more on the molecular basis and the cellular basis than will we (see Appendix E). One could say that the physics of the human body is synonymous with understanding the human machine.
Our goal is to understand physical issues concerning the human body, in part by solving problems to further this understanding. The focus is not at all on learning and memorizing medical terminology. Still some very basic concepts in anatomy and physiology will be introduced and used. Several of the many excellent general anatomy and physiology texts are cited at the end of the chapter [11, 16, 21, 22, 23, 24, 25, 26, 27, 29].

One theme that runs throughout this text is developing and then using simple and subsequently more refined models of the macrophysics of the human body [7, 13, 15]. Physicists tend to model concepts in as simple terms as possible at first. For example, to zero order a physicist would model a cow as a sphere. (This is sometimes used as part of a joke.) We will get a bit more complex here, but not much more. Another theme is to address issues in human biology quantitatively that are often addressed only qualitatively. The call for more quantitative thinking in physiology by Burton in *Physiology by Numbers* [5] is much appreciated by the author. In addition, we will present real physiological data and tie them with quantitative analysis and modeling.

If there is an applied force, energy, fluid flow, a light ray, an electric current, or an electric or magnetic field associated with the body, we will call it physics and we will analyze it. We will tend to avoid topics that delve into more chemistry and biology issues, but will briefly address physical chemistry issues involving concentration gradients and such, as they relate to fluid exchange in capillaries and conduction in nerves. Although we emphasize the physics of the body over the instrumentation used to make physical measurements on the body and probe body function, such instrumentation is addressed as needed.

Our intent is to use basic physics and not to teach it, particularly from scratch. Many chapters include a brief review of the physics principles needed in that chapter and subsequent chapters. Some topics are developed a bit further, and some even a bit further—and these are identified as advanced topics. More detailed overviews are given for topics seldom covered in detail during a two-semester physics course, such as fluids (Chap. 7), acoustics (Chap. 10), and optics (Chap. 11) and for areas used in several contexts, such as harmonic motion (Chap. 3). Some differential and integral calculus is used. (Partial differentiation is used sparingly, and mostly in sections labeled as advanced topics.) A brief review of the solutions to the simple differential equations used here is presented in Appendix C to help students with a limited background in calculus.

We will start with a comparison of medical- and physics-type terminology in Chap. 1. The first chapter also includes a discussion of the “standard” human and introduces the concept of scaling relations. We can group the topics in subsequent 11 chapters into four areas in human body physics. (1) In Chaps. 2–5, the mechanics of the static body (Chap. 2) and the body in motion (Chap. 3) are analyzed and are then linked to the mechanical properties of the materials of the body (Chap. 4) and the body’s motors: muscles (Chap. 5); these topics can be characterized as *Locomotion on Land*. (2) The second topic, *Energetics of the Body Metabolism*, is discussed in Chap. 6 and is needed to understand the discussions of body locomotion and function that precede and follow it. (3) Chapters 7–9 cover the *Locomotion of Humans in Fluids (other than on land)* and the *Motion of Fluids in
Humans. Chapter 7 overviews the physics of fluids and addresses locomotion in water (swimming) and in air—above ground (at least, the prospect for human flying). Chapters 8 and 9 respectively cover the fluidics of blood (cardiovascular system) and air (respiratory system) in the body. Chapter 10 explores the acoustics of sound waves in speaking and hearing. The optics of eyes and vision are investigated in Chap. 11. Basic electrical properties of the body are developed in Chap. 12, along with a brief description of the magnetic properties of the body. So these three chapters respectively address sound, electromagnetic, and electrical waves, which we can collectively call Waves and Signals. (The electromagnetic nature of light waves is not discussed in Chap. 11.)

Chapter 13 examines how the body automatically uses the basic engineering principle of feedback and control in regulating all aspects of function. The physics of sensation of three of the five senses are described: hearing, seeing, and touch—the last briefly in Chap. 2. Some connection is made between the physics of sensation, biochemistry of sensation, and perception (psychophysics) in Chap. 1. The sense of taste and smell are purely chemical, with little basis in physics (other than the chemistry of the molecular interactions in each being clear applications of physics), and are not covered—except for a brief discussion of the electrical properties of the taste and smell sensory neurons in Chap. 12. The emphasis throughout is on how physics can explain the functioning of the body under normal and unusual circumstances. We will concern ourselves with the human body with its common body coverings: footwear to minimize stress during movement (Chap. 4), clothes to regulate heat loss (Chap. 6), and corrective lenses to improve vision (Chap. 11).

The chapters are set more to address specific areas in physics rather than specific parts or systems in the body. It is difficult to construct chapters with clean divisions because different areas of physics are needed to understand many components of the body. For example, to understand the physics of the heart, you need to address its role in circulation (Chap. 8), the action of muscles (Chap. 5, which is more focused on skeletal muscle than the fairly similar cardiac muscle), and the electrical signals generated by the heart (Chap. 12).

This text concludes with five appendices. Appendix A overviews symbols and units, and references tables of units presented in the chapters. Appendix B lists the figures and tables that describe the main features of human anatomical and anthropometric information, which are used throughout this text. The types of differential equations used in the text are reviewed in Appendix C. These same differential equations are used throughout the text in mechanical, fluid flow, and electrical models; the connections between these models are made in Appendix D. Appendix E attempts to define the field of biophysics, and connects the contents of this text with this field.

This text has been developed from the author’s lecture notes developed for the course Physics of the Human Body, which is a “professional-level” restricted elective course he developed taken mostly by first- and second-year undergraduates in the Columbia University Fu Foundation School of Engineering and Applied Science. This course was designed so it could be taken by all first-year students in
their second term (in conjunction with second-term physics and calculus). The author usually covers Chaps. 1–10 in some detail and Chaps. 11–13 in less detail in a full semester.

Courses at different levels, including mid-level and upper-level undergraduate courses, can be taught by purposely including or excluding more detailed and advanced topics in the text and problems. Depending of the level of desired depth, material in about half to all the chapters can be covered in one term.

This text can also be used as a companion volume in introductory physics courses, and assist premedical undergraduates in learning and reviewing physics. It can also serve as a text in introductory biomedical engineering or medical materials courses. Medical students interested in a more quantitative approach to physiology and those doing medical research may also appreciate the approaches adopted here.

Many problems are presented at the end of each chapter, ranging from simple to more advanced problems (the latter are denoted as such). Several problems have multiple parts, and only a few of these parts can be assigned. Answers to selected problems are given after the appendices.

Usually SI (MKS, m-kg-s) units are used; when more convenient, other metric units, including CGS (cm-g-s) units and mixed metric units are used. English FPS (ft-lb-s) units are sometimes purposely used to make a connection to the real world (at least in countries such as the USA and the UK). For example, it would be strange to hear a baseball announcer say, “This pitcher is really throwing some heat. The radar gun clocked his last pitch at 43.8 m/s (or 158 km/h),” as opposed to 98 mph. It would be stranger to hear a football (i.e., American football) announcer say, “They have first (down) and 9.144 to go,” meaning 9.144 m instead of 10 yd. Similarly, it would be strange to discuss the physics of the body in these sports, such as in throwing a baseball, in any but the usual units. Angles are given in radians, except when using degrees gives a more physical picture.

Several excellent texts cover material that overlaps topics covered here, each with a different focus. They are magnificent resources in their own right. Physics of the Body by Cameron, Skofronick, and Grant [6] spans most of the topics in this book and provides excellent physical insight. It is at a level of physics that is lower than that used here and derives and presents fewer of the equations necessary for a more rigorous treatment, but it provides a very good basic background in human physiology for nonexperts. In a way, the emphasis of The Human Machine by Alexander [2] coincides with ours, but, again, the explanations are more qualitative. The mode of physical thinking it presents is impressive. Physics with Examples from Medicine and Biology by Benedek and Villars [3] is a series of three comprehensive introductory physics texts in which excellent examples and problems have been chosen concerning the physics of the body. The authors have taken several fairly complex topics and have made them utterly understandable. Many other first-year general physics texts commonly used nowadays have several examples and chapter problems dealing with the body. Intermediate Physics for Medicine and Biology by Hobbie [14] is a more advanced text that emphasizes both physics and physical chemistry. Medical Physics and Biomedical Engineering by Brown et al. [4] is a bit more advanced and focuses also on classic areas in medical
physics, such as radioactivity and instrumentation. Many of the illustrative problems concerning human biology and related topics have been collected in the beautiful books: *Biomedical Applications of Introductory Physics* by Tuszynski and Dixon [28], *Physics in Biology and Medicine* by Davidovits [9], *Biophysics Problems: A Textbook with Answers* by Maróti, Berkes, and Tólygyesi [17], *Physics for the Biological Sciences: A Topical Approach to Biophysical Concepts* by Hallett, Stinson, and Speight [12], and *Topics in Classical Biophysics* by Metcalf [18]. Many of the issues in exercise physiology, such as the metabolism during sporting activities, are described in elementary terms in *Fox’s Physiological Basis for Exercise and Sport* by Foss and Keteyian [10] and *Physiology of Sport and Exercise* by Wilmore and Costill [30]. *Basic Biomechanics of the Musculoskeletal System*, edited by Nordin and Frankel [20] is a comprehensive and clear overview of the biomechanics of structures, joints, and motion. The applications of physics at a more molecular and cellular level, more in the classical domain of biophysics, are described in *Biophysics: An Introduction*, by Cotterill [8] and *Biological Physics: Energy, Information* by Nelson [19]. The more general application of physics to animals is addressed in the exciting and very comprehensive book *Zoological Physics: Quantitative Models, Body Design, Actions and Physical Limitations in Animals* by Ahlborn [1]. All of these texts are highly recommended for more details. They, along with the anatomy and physiology texts cited earlier, have contributed to the preparation of this text.

The author thanks the many people who have made valuable comments contributing to this book, including Marlene Arbo, Gerard Ateshian, Sarbajit Benerjee, Alex Breskin, Bill Burdick, Yi-Ting Chiang, Kevin Costa, Ted Ducas, Yossi Goffer, Daniel Herman, Jonathan Herman, Steven Heymsfield, Jeffrey Holmes, Mark Langill, Barclay Morrison III, Elizabeth Olson, Thomas Pedersen, Harry Radousky, Paul Sajda, Michael Sheetz, and Samuel Sia. He would also like to thank the Columbia University Library system.

This author began writing this text when he was a Lady Davis Scholar on sabbatical at Hebrew University in Jerusalem as a guest of Uri Banin, and he gratefully acknowledges this support.

New York, NY
November 2006

Irving P. Herman

References

16. E.N. Marieb: *Human Anatomy & Physiology*, 5th edn (Benjamin Cummings, San Francisco 2001)
20. M. Nordin, V.H. Frankel (eds.): *Basic Biomechanics of the Musculoskeletal System*, 3rd edn (Lippincott Williams & Wilkins, Philadelphia 2001)
29. J.B. West (ed.): *Best and Taylor’s Physiological Basis of Medical Practice*, 12th edn (Williams & Wilkins, Baltimore 1991)