Chapter 1
Introduction

The proper conduct of science lies in the pursuit of Nature’s puzzles, wherever they may lead.

J.M. Bishop [2]

Abstract Important dates and events in the history of semiconductors are chronologically listed, from the early days (Volta, Seebeck and Faraday) to the latest achievements like the blue and white LED. Many known and not so well known scientists are mentioned. Also a list of semiconductor related Nobel prizes and their winners is given.

The historic development of semiconductor physics and technology began in the second half of the 19th century. Interesting discussions of the history of the physics and chemistry of semiconductors can be found in [3–5]. The development of crystal growth is covered in [6]. The history of semiconductor industry can be followed in [7, 8]. In 1947, the commercial realization of the transistor was the impetus to a fast-paced development that created the electronics and photonics industries. Products founded on the basis of semiconductor devices such as computers (CPUs, memories), optical-storage media (lasers for CD, DVD), communication infrastructure (lasers and photodetectors for optical-fiber technology, high frequency electronics for mobile communication), displays (thin film transistors, LEDs), projection (laser diodes) and general lighting (LEDs) are commonplace. Thus, fundamental research on semiconductors and semiconductor physics and its offspring in the form of devices has contributed largely to the development of modern civilization and culture.
1.1 Timetable and Key Achievements

In this section early important milestones in semiconductor physics and technology are listed.

1782
A. Volta—coins the phrase ‘semicoibente’ (semi-insulating) which was translated then into English as ‘semiconducting’ [9].

1821
T.J. Seebeck—discovery of thermopower (electrical phenomena upon temperature difference) in metals and PbS, FeS$_2$, CuFeS$_2$ [10].

1833
M. Faraday—discovery of the temperature dependence of the conductivity of Ag$_2$S (sulphuret of silver, negative dR/dT) [11].

1834
J. Peltier—discovery of the Peltier effect (cooling by current) [12].

1873
W. Smith—discovery of photoconductivity in selenium [13]. Early work on photoconductivity in Se is reviewed in [14, 15].

1874
F. Braun1—discovery of rectification in metal–sulfide semiconductor contacts [17], e.g. for CuFeS$_2$ and PbS. The current through a metal–semiconductor contact is nonlinear (as compared to that through a metal, Fig. 1.1), i.e. a deviation from Ohm’s law. Braun’s structure is similar to a MSM diode.

1876
W.G. Adams and R.E. Day—discovery of the photovoltaic effect in selenium [18].

W. Siemens—large response from selenium photoconductor [19], made by winding two thin platinum wires to the surface of a sheet of mica, and then covering the surface with a thin film of molten selenium. Resistance ratio between dark and illuminated by sunlight was larger than ten [19] and measured to 14.8 in [20].

1879
E.H. Hall—measurement of the transverse potential difference in a thin gold leaf on glass [21, 22]. Experiments were continued by his mentor H.A. Rowland [23]. A detailed account of the discovery of the Hall effect is given in [24, 25].

1883
Ch. Fritts—first solar cell, based on a gold/selenium rectifier [20]. The efficiency was below 1 %.

1F. Braun made his discoveries on metal–semiconductor contacts in Leipzig while a teacher at the Thomasschule zu Leipzig [16]. He conducted his famous work on vacuum tubes later as a professor in Strasbourg, France.
1.1 Timetable and Key Achievements

Fig. 1.1 Current through a silver–CuFeS$_2$–silver structure as a function of the current through the metal only, 1874. Data points are for different applied voltages. Experimental data from [17].

1901
J.C. Bose—point contact detector for electromagnetic waves based on galena (PbS) [26]. At the time, the term semiconductor was not introduced yet and Bose speaks about ‘substances of a certain class (...) presenting a decreasing resistance to the passage of the electric current with an increasing impressed electromotive force’.

1906
G.W. Pickard—rectifier based on point contact (cat’s whisker) diode on silicon [27-29]. Erroneously, the rectifying effect was attributed to a thermal effect, however, the drawing of the ‘thermo-junction’ (TJ in Fig. 1.2) developed into the circuit symbol for a diode (cmp. Fig. 21.61a).

1907
H.J. Round—discovery of electroluminescence investigating yellow and blue light emission from SiC [30].

Fig. 1.2 Circuit diagram for a radio receiver with a point-contact diode (TJ). Adapted from [27]
Fig. 1.3 Laue images of ‘regular’ (cubic) ZnS along three major crystallographic directions, directly visualizing their 4-, 3- and 2-fold symmetry. Adapted from [41]

K. Bädeker—preparation of metal (e.g. Cd, Cu) oxides and sulfides and also CuI from metal layers using a vapor phase transport method [31]. CuI is reported transparent (~200 nm thick films) with a specific resistivity of $\rho = 4.5 \times 10^{-2} \, \Omega \cdot \text{cm}$, the first transparent conductor. Also CdO (films of thickness 100–200 nm) is reported to be highly conductive, $\rho = 1.2 \times 10^{-3} \, \Omega \cdot \text{cm}$, and orange-yellow in color, the first reported TCO (transparent conductive oxide).

1909
K. Bädeker—discovery of doping. Controlled variation of the conductivity of CuI by dipping into iodine solutions (e.g. in chloroform) of different concentrations [34].

1910
W.H. Eccles—negative differential resistance of contacts with galena (PbS), construction of crystal oscillators [38].

1911
The term ‘Halbleiter’ (semiconductor) is introduced for the first time by J. Weiss [39] and J. Königsberger and J. Weiss [40]. Königsberger preferred the term ‘Variabler Leiter’ (variable conductor).

1912
M. von Laue—X-ray diffraction of bulk crystals including ZnS (Fig. 1.3) [41, 42].

2This work was conducted as Habilitation in the Physics Institute of Universität Leipzig. Bädeker became subsequently professor in Jena and fell in WW I. His scientific contribution to semiconductor physics is discussed in [32, 33].

3CuI is actually a p-type transparent conductor; at that time the positive sign of the Hall effect [34, 35] could not be interpreted as hole conduction yet.

4Historical remarks on Eccles’ contributions to radio technology can be found in [36, 37].
1925
J.E. Lilienfeld—proposal of the metal-semiconductor field-effect transistor (MESFET) [46], with suggested copper sulfide thin film channel and aluminum gate. Lilienfeld was also awarded patents for a depletion mode MOSFET [48] with proposed copper sulfide, copper oxide or lead oxide channel and current amplification with npn- and pnp-transistors [49]. Due to the lack of other publications of Lilienfeld on transistors, it is under discussion whether Lilienfeld just patented ideas or also build working devices with mounting evidence for the latter [44, 47, 50].

1927
A. Schleede, H. Buggisch—synthesis of pure, stoichiometric PbS, influence of sulphur excess and impurities [51].
A. Schleede, E. Körner—activation of luminescence of ZnS [52, 53].

1928
F. Bloch—quantum mechanics of electrons in a crystal lattice, ‘Bloch functions’ [54].
O.V. Losev—description of the light emitting diode (SiC) [58]; light emission was observed in forward direction and close to breakdown (Fig. 1.5a). Also current modulation of LED light output was reported (Fig. 1.5b) [58].

1929
R. Peierls—explanation of positive (anomalous) Hall effect with unoccupied electron states [59, 60].

5After obtaining his PhD in 1905 from the Friedrich-Wilhelms-Universität Berlin, Julius Edgar Lilienfeld joined the Physics Department of Universität Leipzig and worked on gas liquefaction and with Lord Zeppelin on hydrogen-filled blimps. In 1910 he became professor at the Universität Leipzig where he mainly researched on X-rays and vacuum tubes [43]. To the surprise of his colleagues he left in 1926 to join a US industrial laboratory [44, 45].

6In [44] it is suggested that the device works as a npn transistor, in [47] it is suggested to be a JFET.

7The historic role of Losev regarding the invention of the LED and oscillators is discussed in [55–57].
Fig. 1.5 (a) $I-V$ characteristic of SiC/steel wire light emitting diode. The dotted curve is the flipped curve for negative voltage (3rd quadrant). (b) Recording of current modulated (at 500 Hz) LED on moving photographic plate. Adapted from [58]

Fig. 1.6 First band structure calculation ($\xi = k a$).
Adapted from [62]

1930
R. Peierls—first calculation of a band structure and band gap\(^8\) (Fig. 1.6) [62].

1931
W. Heisenberg—theory of hole (‘Löcher’) states [63].
R. de L. Kronig and W.G. Penney—properties of periodic potentials in solids [64].
A.H. Wilson\(^9\)—development of band-structure theory [67, 68].

\(^8\)Peierls performed this work at suggestion of W. Pauli at ETH Zürich. The mathematical problem of Schrödinger’s equation with a sinusoidal potential had been already treated by M.J.O Strutt in 1928 [61].

\(^9\)Wilson was theoretical physicist in Cambridge, who spent a sabbatical with Heisenberg in Leipzig and applied the brand new field of quantum mechanics to issues of electrical conduction,
1933
C. Wagner—excess (‘Elektronenüberschuss-Leitung’, n-type) and defect (‘Elektronen-Defektleitung’, p-type) conduction [69]. Anion deficiency in ZnO causes conducting behavior [70].

1934
C. Zener—Zener tunneling [71].

1936
J. Frenkel—description of excitons [72].

1938
B. Davydov—theoretical prediction of rectification at pn-junction [73] and in Cu₂O [74].
W. Schottky—theory of the boundary layer in metal–semiconductor contacts [75], being the basis for Schottky contacts and field-effect transistors.
N.F. Mott—metal–semiconductor rectifier theory [76, 77].
R. Hilsch and R.W. Pohl—three-electrode crystal (KBr) [78].

1940
R.S. Ohl—Silicon-based photoeffect (solar cell, Fig. 1.7) [79] from a pn-junction formed within a slab of polycrystalline Si fabricated with directed solidification due to different distribution coefficients of p- and n-dopants (boron and phosphorus, cmp. Fig. 4.6b) (J. Scaff and H. Theurer) [80, 81].

1941
R.S. Ohl—Silicon rectifier with point contact [82, 83] (Fig. 1.8), building on work from G.W. Pickard (1906) and using metallurgically refined and intentionally doped silicon (J. Scaff and H. Theurer) [80].

1942
K. Clusius, E. Holz and H. Welker—rectification in germanium [84].

1945
H. Welker—patents for JFET and MESFET [85].

1947
W. Shockley, J. Bardeen and W. Brattain fabricate the first transistor in the AT&T

(Footnote 9 continued)
first in metals and then in semiconductors. When he returned to Cambridge, Wilson urged that attention be paid to germanium but, as he expressed it long afterward, ‘the silence was deafening’ in response. He was told that devoting attention to semiconductors, those messy entities, was likely to blight his career among physicists. He ignored these warnings and in 1939 brought out his famous book ‘Semiconductors and Metals’ [65] which explained semiconductor properties, including the much-doubted phenomenon of intrinsic semiconductivity, in terms of electronic energy bands. His academic career seems indeed to have been blighted, because despite his great intellectual distinction, he was not promoted in Cambridge (he remained an assistant professor year after year) [66]. Compare the remark of W. Pauli (p. 205).
Fig. 1.7 (a) Optical image of directionally solidified silicon. The lower part contains predominantly boron, the upper part contains predominantly phosphorus. First the growth is porous and subsequently columnar. Adapted from [80]. (b) Spectral response of silicon pn-junction photoelement, 1940. The inset depicts schematically a Si slab with built-in pn-junction formed during directed solidification as shown in panel (a). The arrow denotes the direction of solidification (cmp. Fig. 4.6). Adapted from [79]

Fig. 1.8 Characteristics of a silicon rectifier, 1941. Adapted from [82]

Bell Laboratories, Holmdel, NJ in an effort to improve hearing aids [86].10 Strictly speaking the structure was a point-contact transistor. A 50μm wide slit was cut with a razor blade into gold foil over a plastic (insulating) triangle and pressed with a spring on n-type germanium (Fig. 1.9a) [87]. The surface region of the germanium is p-type due to surface states and represents an inversion layer. The two gold con-

10Subsequently, AT&T, under pressure from the US Justice Department’s antitrust division, licensed the transistor for $25,000. This action initiated the rise of companies like Texas Instruments, Sony and Fairchild.
1.1 Timetable and Key Achievements

Fig. 1.9 (a) The first transistor, 1947 (length of side of wedge: 32 mm). (b) Cutaway model of a 1948 point contact transistor (‘Type A’) based on n-type bulk Ge ($n = 5 \times 10^{14} \text{ cm}^{-3}$) and common base circuit diagram. The surface region ($\sim 100 \text{ nm depth}$) of the Ge is p-type due to surface states and represents an inversion layer. The two wires are made from phosphor bronze. Adapted from [88]

contacts form emitter and collector, the large-area back contact of the germanium the base contact [88]. For the first time, amplification was observed [89]. Later models use two close point contacts made from wires with their tips cut into wedge shape (Fig. 1.9b) [88]. More details about the history and development of the semiconductor transistor can be found in [90], written on the occasion of the 50th anniversary of its invention.

1948
W. Shockley—invention of the bipolar (junction) transistor [91].

1952
H. Welker—fabrication of III–V compound semiconductors [94–97]
W. Shockley—description of today’s version of the (J)FET [98].

11The setup of Fig. 1.9b represents a common base circuit. In a modern bipolar transistor, current amplification in this case is close to unity (Sect. 24.2.2). In the 1948 germanium transistor, the reversely biased collector contact is influenced by the emitter current such that current amplification $\partial I_C/\partial I_E$ for constant U_C was up to 2–3. Due to the collector voltage being much larger than the emitter voltage, a power gain of ~ 125 was reported [88].

12An early concept for III–V semiconductors was developed in [92, 93].
1953

G.C. Dacey and I.M. Ross—first realization of a JFET [99].

D.M. Chapin, C.S. Fuller and G.L. Pearson—invention of the silicon solar cell at Bell Laboratories [100]. A single 2 cm² photovoltaic cell from Si, Si:As with an ultra-thin layer of Si:B, with about 6% efficiency generated 5 mW of electrical power.\(^\text{13}\) Previously existing solar cells based on selenium had very low efficiency (<0.5%).

1958

J.S. Kilby made the first integrated circuit at Texas Instruments. The simple 1.3 MHz RC-oscillator consisted of one transistor, three resistors and a capacitor on a 11 × 1.7 mm\(^2\) Ge platelet (Fig. 1.10a). J.S. Kilby filed in 1959 for a US patent for miniaturized electronic circuits [101]. At practically the same time R.N. Noyce from Fairchild Semiconductors, the predecessor of INTEL, invented the integrated circuit on silicon using planar technology [102]. A detailed and (very) critical view on the invention of the integrated circuit can be found in [103].

Figure 1.10b shows a flip-flop with four bipolar transistors and five resistors. Initially, the invention of the integrated circuit\(^\text{14}\) met scepticism because of concerns regarding yield and the achievable quality of the transistors and the other components (such as resistors and capacitors).

\(^{13}\) A solar cell with 1 W power cost $300 in 1956 ($3 in 2004). Initially, ‘solar batteries’ were only used for toys and were looking for an application. H. Ziegler proposed the use in satellites in the ‘space race’ of the late 1950s.

\(^{14}\) The two patents led to a decade-long legal battle between Fairchild Semiconductors and Texas Instruments. Eventually, the US Court of Customs and Patent Appeals upheld R.N. Noyce’s claims on interconnection techniques but gave J.S. Kilby and Texas Instruments credit for building the first working integrated circuit.
1.1 Timetable and Key Achievements

Fig. 1.11 (a) Optical image of planar pnp silicon transistor (2N1613 [110]), 1959. The contacts are Al surfaces (not bonded). (b) Housing of such transistor cut open

1959
J. Hoerni15 and R. Noyce—first realization of a planar transistor (in silicon) (Fig. 1.11) [105–109].

1960
D. Kahng and M.M. Atalla—first realization of a MOSFET [111, 112].

1962
The first semiconductor laser on GaAs basis at 77 K at GE [113, 114] (Fig. 1.12) and at IBM [115] and MIT [116].
First visible laser diode [117].16

1963
Proposal of a double heterostructure laser (DH laser) by Zh.I. Alferov [120] and H. Kroemer [121].
J.B. Gunn—discovery of the Gunn effect, the spontaneous microwave oscillations in GaAs and InP at sufficiently large applied electric field (due to negative differential resistance) [122].

1966
C.A. Mead—proposal of the MESFET (‘Schottky Barrier Gate FET’) [123].

15The Swiss born Jean Hoerni also contributed $12,000 for the building of the first school in the Karakoram Mountain area in Pakistan and has continued to build schools in Pakistan and Afghanistan as described in [104].

16Remarks on the discovery and further development of the laser diode can be found in [118, 119].
1967
Zh.I. Alferov—report of the first DH laser on the basis of GaAsP at 77 K [124, 125].
W.W. Hooper and W.I. Lehrer—first realization of a MESFET [126].

1968
DH laser on the basis of GaAs/AlGaAs at room temperature, independently developed by Zh.I. Alferov [127] and I. Hayashi [128].
GaP:N LEDs with yellow-green emission (550 nm) and 0.3 % efficiency [129].

1968
SiC blue LED with efficiency of 0.005 % [130].

1975
First monolithic microwave integrated circuit (MMIC) (Fig. 1.13) [131]

1992
S. Nakamura—growth of high-quality group-III–nitride thin films [132], blue nitride heterostructure LED with efficiency exceeding 10 % (1995) [133] (Fig. 1.14a). Later the white LED was built by combining a blue LED with yellow phosphors (Fig. 1.14b, c).

1.2 Nobel Prize Winners

Several Nobel Prizes\(^\text{17}\) have been awarded for discoveries and inventions in the field of semiconductor physics (Fig. 1.15).

1909
Karl Ferdinand Braun
‘in recognition of his contributions to the development of wireless telegraphy’

\(^{17}\text{www.nobel.se.}\)
Fig. 1.13 Equivalent circuit and optical image of first monolithic microwave integrated circuit (exhibiting gain $(4.5 \pm 0.9 \text{ dB})$ in the frequency range $7.0–11.7 \text{GHz}$). Adapted from [131]

Fig. 1.14 (a) Blue LED (standard housing). 50 W, 4000 lm (b) warm white and (c) cold white LED ($45 \times 45 \text{ mm}^2$)

1914
Max von Laue ‘for his discovery of the diffraction of X-rays by crystals’

1915
Sir William Henry Bragg
William Lawrence Bragg
‘for their services in the analysis of crystal structure by means of X-rays’
1946
Percy Williams Bridgman
‘for the invention of an apparatus to produce extremely high pressures, and for the discoveries he made therewith in the field of high pressure physics’

1953
William Bradford Shockley
John Bardeen
Walter Houser Brattain
‘for their researches on semiconductors and their discovery of the transistor effect’

1973
Leo Esaki
‘for his experimental discoveries regarding tunneling phenomena in semiconductors’

1985
Klaus von Klitzing
‘for the discovery of the quantized Hall effect’

1998
Robert B. Laughlin
Horst L. Störmer
Daniel C. Tsui
‘for their discovery of a new form of quantum fluid with fractionally charged excitations’

2000
Zhores I. Alferov
Herbert Kroemer
‘for developing semiconductor heterostructures used in high-speed and optoelectronics’
Jack St. Clair Kilby
‘for his part in the invention of the integrated circuit’

2009
Willard S. Boyle
George E. Smith
‘for the invention of an imaging semiconductor circuit—the CCD sensor’
<table>
<thead>
<tr>
<th>Year</th>
<th>Nobel Prize Winners</th>
</tr>
</thead>
<tbody>
<tr>
<td>1909</td>
<td>Karl Ferdinand Braun, 1850–1918</td>
</tr>
<tr>
<td>1914</td>
<td>Max von Laue, 1879–1960</td>
</tr>
<tr>
<td>1915</td>
<td>Sir William Henry Bragg, 1862–1942</td>
</tr>
<tr>
<td>1915</td>
<td>William Laurence Bragg, 1890–1971</td>
</tr>
<tr>
<td>1946</td>
<td>Percy Williams Bridgman, 1882–1961</td>
</tr>
<tr>
<td>1953</td>
<td>William B. Shockley, 1910–1989</td>
</tr>
<tr>
<td>1953</td>
<td>John Bardeen, 1908–1991</td>
</tr>
<tr>
<td>1953</td>
<td>Walter Hauser Brattain, 1902–1987</td>
</tr>
<tr>
<td>1973</td>
<td>Leo Esaki, *1925</td>
</tr>
<tr>
<td>1985</td>
<td>Klaus von Klitzing, *1943</td>
</tr>
<tr>
<td>1998</td>
<td>Robert B. Laughlin, *1930</td>
</tr>
<tr>
<td>1998</td>
<td>Daniel C. Tsui, *1939</td>
</tr>
<tr>
<td>2000</td>
<td>Zhores I. Alferov, *1938</td>
</tr>
<tr>
<td>2000</td>
<td>Herbert Kroemer, *1928</td>
</tr>
</tbody>
</table>

Fig. 1.15 Winners of Nobel Prize in Physics and year of award with great importance for semiconductor physics.
Willard S. Boyle
(1924–2011)

George E. Smith
(*1930)

Andre Geim
*1958

Konstantin Novoselov
*1974

Isamu Akasaki
(*1929)

Hiroshi Amano
(*1960)

Shuji Nakamura
(*1954)

2009

2010

2014

2010

2014

2014

Fig. 1.15 (continued)

2010

Andre Geim
Konstantin Novoselov
‘for groundbreaking experiments regarding the two-dimensional material graphene’

2014

Isamu Akasaki
Hiroshi Amano
Shuji Nakamura
‘for the invention of efficient blue light-emitting diodes which has enabled bright and energy-saving white light sources’.
Fig. 1.16 Periodic table of elements. From [147]
Table 1.1 Physical properties of various semiconductors at room temperature

<table>
<thead>
<tr>
<th></th>
<th>ω_0 (nm)</th>
<th>E_g (eV)</th>
<th>m_e^*</th>
<th>m_h^*</th>
<th>ϵ_0</th>
<th>n_r</th>
<th>μ_e (cm2/Vs)</th>
<th>μ_h (cm2/Vs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>0.3567</td>
<td>5.45 (Γ)</td>
<td>0.98 (m_l)</td>
<td>0.16 (m_{lh})</td>
<td>5.5</td>
<td>2.42</td>
<td>2200</td>
<td>1600</td>
</tr>
<tr>
<td>Si</td>
<td>0.5431</td>
<td>1.124 (X)</td>
<td>0.19 (m_t)</td>
<td>0.5 (m_{hh})</td>
<td>11.7</td>
<td>3.44</td>
<td>1350</td>
<td>480</td>
</tr>
<tr>
<td>Ge</td>
<td>0.5646</td>
<td>0.67 (L)</td>
<td>1.58 (m_l)</td>
<td>0.04 (m_{lh})</td>
<td>16.3</td>
<td>4.00</td>
<td>3900</td>
<td>1900</td>
</tr>
<tr>
<td>α-Sn</td>
<td>0.64892</td>
<td>0.08 (Γ)</td>
<td>0.02</td>
<td>9.7</td>
<td>2.7</td>
<td>2000</td>
<td>1000</td>
<td></td>
</tr>
<tr>
<td>3C-SiC</td>
<td>zb</td>
<td>0.436</td>
<td>2.4</td>
<td>9.7</td>
<td>2.7</td>
<td>1000</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>4H-SiC</td>
<td>w</td>
<td>0.3073 (a)</td>
<td>3.26</td>
<td>9.6</td>
<td>2.7</td>
<td>120</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4H-SiC</td>
<td>1.005 (c)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6H-SiC</td>
<td>w</td>
<td>0.30806 (a)</td>
<td>3.101</td>
<td>10.2</td>
<td>2.7</td>
<td>1140</td>
<td>850</td>
<td></td>
</tr>
<tr>
<td>AlN</td>
<td>w</td>
<td>0.3111 (a)</td>
<td>6.2</td>
<td>8.5</td>
<td>3.32</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AlP</td>
<td>zb</td>
<td>0.54625</td>
<td>2.43 (X)</td>
<td>0.13</td>
<td>9.8</td>
<td>3.0</td>
<td>80</td>
<td></td>
</tr>
<tr>
<td>AlAs</td>
<td>zb</td>
<td>0.56605</td>
<td>2.16 (X)</td>
<td>0.5</td>
<td>0.49 (m_{lh})</td>
<td>12</td>
<td>1000</td>
<td>80</td>
</tr>
<tr>
<td>AlSb</td>
<td>zb</td>
<td>0.61335</td>
<td>1.52 X</td>
<td>0.11</td>
<td>0.39</td>
<td>11</td>
<td>3.4</td>
<td>200</td>
</tr>
<tr>
<td>GaN</td>
<td>w</td>
<td>0.3189 (a)</td>
<td>3.4 (Γ)</td>
<td>0.2</td>
<td>0.8</td>
<td>12</td>
<td>2.4</td>
<td>1500</td>
</tr>
<tr>
<td>GaP</td>
<td>zb</td>
<td>0.5406</td>
<td>2.26 (Γ)</td>
<td>0.13</td>
<td>0.67</td>
<td>10</td>
<td>3.37</td>
<td>300</td>
</tr>
<tr>
<td>GaAs</td>
<td>zb</td>
<td>0.56533</td>
<td>1.42 (Γ)</td>
<td>0.067</td>
<td>0.12 (m_{lh})</td>
<td>12.5</td>
<td>3.4</td>
<td>8500</td>
</tr>
<tr>
<td>GaSb</td>
<td>zb</td>
<td>0.60954</td>
<td>0.72 (Γ)</td>
<td>0.045</td>
<td>0.39</td>
<td>15</td>
<td>3.9</td>
<td>5000</td>
</tr>
</tbody>
</table>

(continued)
Table 1.1 (continued)

<table>
<thead>
<tr>
<th>S</th>
<th>a_0 (nm)</th>
<th>E_g (eV)</th>
<th>m_e^*</th>
<th>m_h^*</th>
<th>ϵ_0</th>
<th>n_r</th>
<th>μ_e (cm2/Vs)</th>
<th>μ_h (cm2/Vs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>InN</td>
<td>w</td>
<td>0.3533</td>
<td>0.69 (Γ)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.5693</td>
<td>0.69 (Γ)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>InP</td>
<td>zb</td>
<td>0.58686</td>
<td>1.35 (Γ)</td>
<td>0.07</td>
<td>0.4</td>
<td>12.1</td>
<td>3.37</td>
<td>4000</td>
</tr>
<tr>
<td>InAs</td>
<td>zb</td>
<td>0.60584</td>
<td>0.36 (Γ)</td>
<td>0.028</td>
<td>0.33</td>
<td>12.5</td>
<td>3.42</td>
<td>22600</td>
</tr>
<tr>
<td>InSb</td>
<td>zb</td>
<td>0.64788</td>
<td>0.18 (Γ)</td>
<td>0.013</td>
<td>0.18</td>
<td>18</td>
<td>3.75</td>
<td>100000</td>
</tr>
<tr>
<td>ZnO</td>
<td>w</td>
<td>0.325 (a)</td>
<td>3.4 (Γ)</td>
<td>0.24</td>
<td>0.59</td>
<td>6.5</td>
<td>2.2</td>
<td>220</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.5206 (c)</td>
<td>0.5206 (c)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ZnS</td>
<td>zb</td>
<td>0.54109</td>
<td>3.6 (Γ)</td>
<td>0.3</td>
<td>8.3</td>
<td>2.4</td>
<td>110</td>
<td></td>
</tr>
<tr>
<td>ZnSe</td>
<td>zb</td>
<td>0.56686</td>
<td>2.58 (Γ)</td>
<td>0.17</td>
<td>8.1</td>
<td>2.89</td>
<td>600</td>
<td></td>
</tr>
<tr>
<td>ZnTe</td>
<td>zb</td>
<td>0.61037</td>
<td>2.25 (Γ)</td>
<td>0.15</td>
<td>9.7</td>
<td>3.56</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CdO</td>
<td>rs</td>
<td>0.47</td>
<td>2.16</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CdS</td>
<td>w</td>
<td>0.416 (a)</td>
<td>2.42 (Γ)</td>
<td>0.2</td>
<td>0.7</td>
<td>8.9</td>
<td>2.5</td>
<td>250</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.6756 (c)</td>
<td>0.6756 (c)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CdSe</td>
<td>zb</td>
<td>0.650</td>
<td>1.73 (Γ)</td>
<td>0.13</td>
<td>0.4</td>
<td>10.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CdTe</td>
<td>zb</td>
<td>0.64816</td>
<td>1.50 (Γ)</td>
<td>0.11</td>
<td>0.35</td>
<td>10.9</td>
<td>2.75</td>
<td>1050</td>
</tr>
<tr>
<td>MgO</td>
<td>rs</td>
<td>0.421</td>
<td>7.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HgS</td>
<td>zb</td>
<td>0.5852</td>
<td>2.0 (Γ)</td>
<td>0.45</td>
<td>25</td>
<td>18500</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HgSe</td>
<td>zb</td>
<td>0.6084</td>
<td>-0.15 (Γ)</td>
<td>0.045</td>
<td>20</td>
<td>18000</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>HgTe</td>
<td>zb</td>
<td>0.64616</td>
<td>-0.15 (Γ)</td>
<td>0.029</td>
<td>0.3</td>
<td>20</td>
<td>3.7</td>
<td>22000</td>
</tr>
<tr>
<td>PbS</td>
<td>rs</td>
<td>0.5936</td>
<td>0.37 (L)</td>
<td>0.1</td>
<td>0.1</td>
<td>170</td>
<td>3.7</td>
<td>500</td>
</tr>
<tr>
<td>PbSe</td>
<td>rs</td>
<td>0.6147</td>
<td>0.26 (L)</td>
<td>0.07 (m_{lh})</td>
<td>0.06 (m_{lh})</td>
<td>250</td>
<td>1800</td>
<td>930</td>
</tr>
<tr>
<td></td>
<td>S</td>
<td>a_0 (nm)</td>
<td>E_g (eV)</td>
<td>m_e^*</td>
<td>m_h^*</td>
<td>ϵ_0</td>
<td>n_r</td>
<td>μ_e (cm2/Vs)</td>
</tr>
<tr>
<td>-----------</td>
<td>-----</td>
<td>------------</td>
<td>------------</td>
<td>---------</td>
<td>---------</td>
<td>---------------</td>
<td>-------</td>
<td>---------------------</td>
</tr>
<tr>
<td>PbTe</td>
<td>rs</td>
<td>0.645</td>
<td>0.29 (L)</td>
<td>0.24 (m_{lh})</td>
<td>0.3 (m_{lh})</td>
<td>412</td>
<td></td>
<td>1400</td>
</tr>
<tr>
<td>ZnSiP$_2$</td>
<td>ch</td>
<td>0.54 (a)</td>
<td>0.54 (a)</td>
<td>0.07</td>
<td>0.07</td>
<td>0.07</td>
<td>0.07</td>
<td>0.07</td>
</tr>
<tr>
<td>ZnGeP$_2$</td>
<td>ch</td>
<td>0.5651 (a)</td>
<td>0.5651 (a)</td>
<td>1.0441 (c)</td>
<td>1.0771 (c)</td>
<td>1.0771 (c)</td>
<td>1.0771 (c)</td>
<td>1.0771 (c)</td>
</tr>
<tr>
<td>ZnSnP$_2$</td>
<td>ch</td>
<td>0.5651 (a)</td>
<td>0.5651 (a)</td>
<td>1.0441 (c)</td>
<td>1.0771 (c)</td>
<td>1.0771 (c)</td>
<td>1.0771 (c)</td>
<td>1.0771 (c)</td>
</tr>
<tr>
<td>CuInS$_2$</td>
<td>ch</td>
<td>0.523 (a)</td>
<td>0.523 (a)</td>
<td>1.1302 (c)</td>
<td>1.1302 (c)</td>
<td>1.1302 (c)</td>
<td>1.1302 (c)</td>
<td>1.1302 (c)</td>
</tr>
<tr>
<td>CuGaS$_2$</td>
<td>ch</td>
<td>0.5347 (a)</td>
<td>0.5347 (a)</td>
<td>1.113 (c)</td>
<td>1.113 (c)</td>
<td>1.113 (c)</td>
<td>1.113 (c)</td>
<td>1.113 (c)</td>
</tr>
<tr>
<td>CuInSe$_2$</td>
<td>ch</td>
<td>0.5784 (a)</td>
<td>0.5784 (a)</td>
<td>1.162 (c)</td>
<td>1.162 (c)</td>
<td>1.162 (c)</td>
<td>1.162 (c)</td>
<td>1.162 (c)</td>
</tr>
<tr>
<td>CuGaSe$_2$</td>
<td>ch</td>
<td>0.5614 (a)</td>
<td>0.5614 (a)</td>
<td>1.103 (c)</td>
<td>1.103 (c)</td>
<td>1.103 (c)</td>
<td>1.103 (c)</td>
<td>1.103 (c)</td>
</tr>
</tbody>
</table>

'S' denotes the crystal structure (d diamond, w wurtzite, zb zincblende, ch chalcopyrite, rs rocksalt)
1.3 General Information

In Fig. 1.16, the periodic table of elements is shown.

In Table 1.1 the physical properties of various semiconductors are summarized.

Data on semiconductors can be found in [134–146].
The Physics of Semiconductors
An Introduction Including Nanophysics and Applications
Grundmann, M.
2016, XXXIX, 989 p. 855 illus., 200 illus. in color., Hardcover
ISBN: 978-3-319-23879-1