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Abstract Many real-world optimizationproblems consist of severalmutually depen-
dent subproblems. If more than three optimization objectives are involved in the
optimization process, the so-called Many-Objective Optimization is a challenge in
the area of multi-objective optimization. Often, the objectives have different levels
of importance that have to be considered. For this, relation ε-Preferred has been pre-
sented, that enables to compare and rank multi-dimensional solutions. ε-Preferred
is controlled by a parameter ε that has influence on the quality of the results. In this
paper for the setting of the epsilon values three heuristics have been investigated.
To demonstrate the behavior and efficiency of these methods an Evolutionary Algo-
rithm for the multi-dimensional Nurse Rostering Problem is proposed. It is shown
by experiments that former approaches are outperformed by heuristics that are based
on self-adaptive mechanisms.

Keywords Many-objective optimization · Nurse rostering problem · Relation
ε-preferred · User preferences

1 Introduction

During the last 20 years solving Multi-Objective Optimization (MOO) problems
is getting more and more important. Many real-world problems consist of multi-
ple competing subproblems that have to be optimized in parallel. For Evolutionary
Algorithms (EAs) many approaches have been presented that cope with MOO prob-
lems [1–4]. If more than three objectives are involved in the optimization process
the corresponding problems are called many-objective optimization problems. Espe-
cially, if real-world optimization problems are of interest, more than three objectives
are considered during the optimization process [5–7]. Furthermore, in industrial
problems optimization criteria have often different levels of importance. These user
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preferences have to be taken into account during optimization. Considering both,
many-objective optimization and user preferences, there is a need for optimization
models that combine these properties [8–12].

To overcome these problems one classical method to combine multiple optimiza-
tion criteria with user preferences is the Weighted Sum approach. Here, a single value
is computed by a linear combination of the considered criteria. By the choice of the
weights for each criterion the influence of the user preference can be controlled. It
is often used in industrial applications, because it is easy to implement and at a first
view scales well. Further examinations have shown that it is a challenge to adjust the
weights such that the search is guided in the desired direction [5, 13]. A disadvantage
of the weighted sum approach is that it is incapable to find compromise solutions of
concave Pareto fronts. A further classical approach is the use of Non-dominated Sets
that is based on the Pareto-Dominance relation [14]. Using the Dominance relation
a ranking between multi-dimensional solutions can be required. If EAs are used for
MOO, the method NSGA-II [3] is a basic approach that is based on non-dominated
sorting. It is suitable in low dimensions, but for more than three objectives more
sophisticated approaches are required [15, 16]. As an alternative, the hypervolume
indicator is proposed, i.e. to each candidate solution an indicator value is assigned,
but due to the computational complexity it can only be applied in low dimensions.
An approximation of the hypervolume for higher dimensions is presented in [4].

In further developments relation ε-Preferredhas beenproposed formany-objective
optimization [17]. Using relation ε-Preferred a ranking between solutions can be
determined and solutions that are incomparable using Dominates can be distin-
guished. Thus ε-Preferred is a refinement of relation Dominates. In [12] the model
based on ε-Preferred has been enlarged such that it can also handle user preferences
(priorities). For this model, the influence of parameter ε has been investigated and
method AEP, that determines ε automatically, has been presented. In this context
the Nurse Rostering Problem (NRP) has been considered, i.e. a scheduling problem
where a working plan for employees in a hospital has to be computed. The proposed
method is compared to the well-known NSGA-II approach, because the modeling
of user preferences as proposed in this article can easily be used within this method.
A comparison to more sophisticated approaches, like e.g. the MOEA/D [18] or the
hypervolume approach [4] can not directly be performed: Taking the user defined
priorities into account, the comparison to these approaches without user preference
modeling is not meaningful, because the usage of user preferences is not provided.

In this paper anEvolutionary Algorithm that makes use of the ε-Preferred relation
including user preferences is applied to the NRP.1 In contrast to [12] the full potential
of the presented model has been exploited. To model the user preferences in [12]
only two types of priorities are used, the soft constraints and hard constraints. The
hard constraints have a higher priority during optimization than the soft constraints.
The hard constraints map the rules of the nurse station. Each soft constraint itself

1For the investigation of this approach the NRP has been used as application, because it consists
of many objectives with different levels of priorities. There, in contrast to standard benchmarks for
MOO (DTLZ [19]), the priorities are provided in the benchmark files.
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consists of up to 90 rules that have different user preferences. These user preferences
are directly given as weights in the benchmark examples [20]. Then, a weighted
sum is constructed to compute the constraints. Using the soft and hard constraints,
a multi-dimensional fitness function is computed, such that the hard constraint and
for each employee the corresponding soft constraints are provided. Following this,
benchmarks with up to 17 optimization criteria are considered. In contrast, in this
approach each rule of the soft constraints is treated as a separated optimization
criterion. This leads to fitness functions with up to 90 objectives. For each rule a
priority is calculated dependent on the weight that is specified in the benchmark. In
the experiments it is shown that the results from [12] can be further improved if the
advanced model as described above is used.

Furthermore, the justification of the epsilon values is examined. Two self-adapting
methods for epsilon adaptation are presented. It is shown in our experiments that AEP
[12] can be further improved. Additionally, an approach based on Weighted Sums is
outperformed, where previously published methods fail.

2 Preliminaries

First, we give a short introduction into the basic techniques of multi-objective opti-
mization and relations used for comparison.

2.1 Multi-objective Optimization

A multi-objective optimization problem is defined as follows: Given a search space
Ω , an evaluation function f : Ω → R

m is defined to calculate the fitness vector
F(A) : ∀A ∈ Ω of size m. Then we have to minimize (or maximize) the elements
of F(A). In the following we assume, without loss of generality, that F has to be
minimized for all objectives. According to [14] it holds:

Definition 1 Let A, B ∈ Ω .

A ≺dominates B :⇔ ∃ j : Fj (A) < Fj (B) : Fi (A) � Fi (B), 1 � i � m. (1)

Based on this, we can describe the Pareto set as

χ : ∀p ∈ χ : �q ∈ Ω : q ≺dominates p. (2)

It can be directly seen from the definition that for A, B ∈ Ω element A dominates B
only if A is better than B in at least one component and equal or better in all compo-
nents. RelationDominates is a partial order. In evolutionarymulti-objective optimiza-
tion relation Dominates is used to perform Non-dominated Sorting [3]: All elements
of a population are compared using dominates and the non-dominated elements are
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computed. This set is called Non-dominated Set. Disregarding the Non-dominated
Set the next level of non-dominated elements is considered. This is repeated, until
all elements are classified. The elements A ∈ Ω in the Non-dominated Set are equal
or not comparable and hence, the designer is interested in solutions from the Non-
dominated Set.

2.2 Relation Preferred

In [5] a refinement of relation Dominates has been presented. The approach is well-
suited for problems in many-objective optimization, i.e. if more than three optimiza-
tion criteria are considered. In [3] it has been shown that in higher dimensions more
than 90% of the population are Non-dominated elements and thus, a ranking used
for selectionmechanisms cannot be performed. To overcome these problems relation
Preferred is defined as follows:

Definition 2 Let A, B ∈ Ω and 1 ≤ i, j,≤ m.

A ≺pre f erred B :⇔ |{i : Fi (A) < Fi (B)}| > |{ j : Fj (B) < Fj (A)}|. (3)

Relation Preferred considers the number of different objectives of A and B. A is
preferred to B if i(i < m) objectives of A are smaller or equal than the corresponding
objectives in B and only j ( j < i) objectives of B are smaller or equal than the
corresponding objectives in A.

Using relation Preferred the solutions in a population are classified in so-called
Satisfiability Classes (SCs) [5]. All solutions A ∈ Ω are compared using relation
Preferred. Then the relation graph is constructed, where each element is a node and
preferences are represented by edges. Preferred is not a partial order, because the
relation graph can have cycles, and thus it is not transitive.

To overcome this property the relation graph is modified such that cycles are
eliminated. The main idea is that elements that are included in a cycle should be
ranked equally. For this the Strongly Connected Components (SCC) of the graph
are computed by a linear time DFS-based algorithm [21]. Then the relation graph
is modified such that each SCC is replaced by a new node representing all elements
in the corresponding cycle. Doing so, all cycles in the relation are eliminated. The
relation that is represented by the acyclic relation graph is transitive and antisym-
metric, which is sufficient for our purposes. Level sorting of the nodes in the acyclic
relation graph determines a ranking of SCCs, where each level defines a SC. This is
illustrated in the following example:

Example 1 Consider some solution vectors from R
3, i.e. each vector is a solution

consisting of three objectives (m1, m2, m3):

(0, 1, 2) (1, 1, 2) (2, 1, 1) (7, 0, 9) (8, 7, 1) (1, 9, 6)
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(a) (b) (c)

Fig. 1 Relation graph and Satisfiability Classes

The relation graph of these elements and relation Preferred is given in Fig. 1a. Ele-
ments (0, 1, 2), (1, 1, 2) and (2, 1, 1) are preferred to the remaining elements, but
(0, 1, 2) and (2, 1, 1) ((1, 1, 2) and (2, 1, 1)) are not comparable. Additionally, element
(0, 1, 2) is preferred to (1, 1, 2). The remaining three vectors (8, 7, 1), (1, 9, 6), and
(7, 0, 9) are pairwise comparable. But as can be seen in the relation graph they
describe a “cycle”. Thus relation Preferred is not transitive. For more details see [5].

2.3 Relation ε-Preferred

In [17] an enlargement for many-objective optimization of relation Preferred has
been introduced. For the proposed relation ε-Preferred fitness limits εi , 1 ≤ i ≤ m,

for each dimension are defined.

Definition 3 Let A, B ∈ Ω and εi , 1 � i � m.

A ≺ε−exceed B ⇔ |{i : Fi (A) < Fi (B) ∧ |Fi (A) − Fi (B)| > εi }| (4)

> |{ j : Fj (A) > Fj (B) ∧ |Fj (A) − Fj (B)| > ε j }| (5)

ε-exceed counts how often a solution exceeds the given limits εi . Then solution A is
better than solution B with respect to the limits εi , if A has more exceeding than B.
Using ε-exceed the extension ε-Preferred is defined as follows:

Definition 4 Given two solutions A, B ∈ Ω .

A ≺ε−pre f erred B ⇔ A ≺ε−exceed B ∨ (B ⊀ε−exceed A ∧ A ≺pre f erred B) (6)
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First it is counted how often a solution exceeds the ε-limits and the better solution is
determined. If both solutions are in the given range Preferred is used for comparison.

Example 2 Consider some solution vectors fromR
3, i.e. the results of three objective

functions:

(7, 0, 9) (8, 7, 1) (1, 9, 6)

Additionally, let εi = 5, 1 ≤ i ≤ 3. (7, 0, 9) ≺ε−pre f erred (8, 7, 1), because for the
second objective it holds |0 − 7| > ε2, where solution (7, 0, 9) “wins”, and for the
third it holds |9−1| > ε3, where solution (8, 7, 1) “wins”. Since each solution has an
ε-exceeding objective, Preferred is used for comparison. The same argumentation
holds for (8, 7, 1) ≺ε−pre f erred (1, 9, 6) and (1, 9, 6) ≺ε−pre f erred (7, 0, 9).

Analogously to Preferred relation ε-Preferred is not transitive. Thus, the algorithm
that computes the SCCs is applied to the relation graph as described in Sect. 2.2 and
in [5].

2.4 Relation Prio-ε-Preferred

In many real world applications the optimization criteria have user specific prefer-
ences that have to be modeled during the optimization process. To model priorities
of optimization objectives in [12] relation Prio-ε-Preferred is defined. It is a com-
bination of relation ε-Preferred and a lexicographic ordering of the objectives.

Let us assume that priorities 1, 2, . . . , k are assigned to the objectives in an ascend-
ing ordering, i.e. the lower the index i, 1 ≤ i ≤ k, the higher the priority.

Definition 5 Let p = (p1, . . . , pk) be a priority vector. pi determines the number
of objectives that have priority i . The priority of an objective is calculated by the
function:

pr : {1, . . . , m} → {1, . . . , k} (7)

The subvector of objectives c|i of priority i is defined as

c|i ∈ R
pi , c|i = (cr , . . . , cs) (8)

where

r =
i−1∑

j=1

p j + 1 ∧ s =
i∑

j=1

p j . (9)
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Fig. 2 Sketch of basic
algorithm

Prio-ε-Preferred (population) {
for all (individuals)
{
calculate pairwise Prio-ε-Preferred () ;
construct relation graph () ;
calculate strongly connected components () ;
perform level sorting () ;

}
return level of individuals ; //ranking

}

For A, B ∈ Ω the relation ≺ε−priopre f (Prio-ε-Preferred) is defined by

A ≺ε−priopre f B : ⇔ ∃ j ∈ {1, . . . , k} : A| j ≺ε−pre f erred B| j (10)
∧ (∀h < j : A|h ⊀ε−pre f erred B|h ∧ B|h ⊀ε−pre f erred A|h) (11)

To perform a ranking of a set of elements, analogously to Sect. 2.2 the Satisfiability
Classes are computed. For this a set of elements is pairwise compared using Prio-
ε-Preferred and the relation graph is constructed. Then the algorithm for finding the
Strongly-Connected Components (SCC) is applied to eliminate cycles in the relation
graph. A sketch of the algorithm is given in Fig. 2.

To give an impression on the properties of relation Prio-ε-Preferred an example
is considered.

Example 3 Let us consider a problemwith 5 objectiveswith 3 different priorities. Let
c = (c1, c2, c3, c4, c5) a solution vector and p = (1, 3, 1) a priority vector, i.e. one
objective has priority 1 (i.e. p1 = 1), three objectives have priority 2 (p2 = 3) and
one objective has priority 3 (p3 = 1). This leads to the function pr with pr(1) = 1,
pr(2) = 2, pr(3) = 2, pr(4) = 2, and pr(5) = 3 what means that the first objective
has priority 1, the second objective priority 2, and so on. For priority 2 the projection
is c|2 ∈ R

3, c|2 = (c2, c3, c4), since r = 1 + 1 = 2 and s = 1 + 3 = 4.
Now, let us consider two solution vectors, A = (2, 7, 0, 9, 15) and B =

(2, 1, 9, 6, 5). Then it holds, that B ≺ε−priopre f A. For this, first the objectives with
priority 1 are compared. Since they are equal, next the objectives with priority 2 are
compared with relation ≺ε−pre f erred , i.e. (1, 9, 6) ≺ε−pre f erred (7, 0, 9) (see Exam-
ple2) which leads to the statement B ≺ε−priopre f A. The last objective has not to be
considered anymore, because it has lowest priority and the decision, which solution
is better with respect to relation ≺ε−priopre f , has already been made.

3 Nurse Rostering Problem

In this section a description of theNurse Rostering Problem (NRP) and the algorithm
for evolutionary many-objective optimization is given.
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3.1 Problem Description

Since several years the NRP is of high interest andmany approaches for optimization
have been presented [20, 22]. The NRP is a utilization planning problem, where a
working plan for employees in a hospital has to be determined. Working shifts, like
e.g. day shift, night shift, stand-by shift, long shift or vacations have to be assigned
to each employee and working day, such that sufficient employees are on duty and
the working contracts of the employees are fulfilled.

For optimization solution schedules have to be evaluated by a fitness function.
The fitness function consists of multiple criteria, that can be categorized in hard
constraints that have to be fulfilled and soft constraints that improve the fitness
function. A solution can still be valid, even though a soft constraint is not fulfilled.
But indeed, a solution that does not fulfill soft constraints can be rejected by the
planner. The constraints are given as rules that are specified in the benchmarks
[20]. The benchmarks are available from [23]. The rules can be categorized into the
following main areas:

1. Rules of the nurse station, e.g. sufficient nurses per shift
2. Restrictions by law, e.g. maximal hours of work per day or maximal working

days per month
3. Rules resulting from ergonomics, e.g. having ergonomic shift pattern

Following the benchmarks from [20] the rule of the first category is modeled as
hard constraint, whereas the rules of item 2. and 3. are given as soft constraints. The
influence of the rules in the fitness function is controlled by weights that are given
in the benchmarks. Concerning the weights in the benchmarks it is assumed to use a
Weighted Sum for the calculation of the fitness function. In this application schedules
for up to 16 employees for a planning period of 30 days are considered. Instead of
using a weighted sum, the weights of the rules determine a priority that is used by
relation Prio-ε-Preferred. The details are described in Sect. 3.2.

Example 4 In Fig. 3 an example of a schedule for theNRP is given. To each employee
A–H and day (02nd–29th) a shift is assigned, where the shifts are labeled as follows:
Day shift (D), night shift (N). In the vertical columns the rules of the nurse station are
evaluated. In this example for shift D three employees and for shift N one employee
have to be on duty. This hard constraint is fulfilled for each day. For the maximal
workingdays permonth the vertical rowshave to be evaluated.Notice, that employees
E-H have half time positions, thus they have less working days. It can be seen that
the ergonomic rules of the shift pattern (soft constraints) are fulfilled, i.e. desired
patterns like e.g. DDDNN are given in the solution. Undesired patterns like single
shifts are not scheduled. For more details about the NRP see [20, 22, 23].
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1 2 3 4

02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

M T W T F S S M T W T F S S M T W T F S S M T W T F S S

A D D D D D D D D D D D D D D D N N N

B D D D D N N D D D D N N D D D D D D

C D D N N D D D D D D D D D N N D D D

D N N D D D D D D D D D D D D D D N N

E D D D D D N N N D D

F N N N D D D D D D D

G D D N N N D D D D D

H D D D N N N N D D D

Fig. 3 Example nurse rostering schedule for benchmark GPost

3.2 Proposed Model for Many-Objective Optimization

In this application an Evolutionary Algorithm (EA) is used to optimize the schedules.
Details of representation of the individuals and evolutionary operators are left out
due to page limitation.

The fitness function F(A), A ∈ Ω , consists of m functions Fi , 1 ≤ i ≤ m, that
are directly derived from the benchmark under consideration. For each hard and soft
constraint in the benchmark an objective Fi is defined that has to be minimized.
Following Definition5 the priority function pr for the objectives is calculated such
that the higher the weight of an objective i the higher is the priority pr(i). First, the
objectives that correspond to hard constraints get the highest priority value 1. The
remaining objectives that correspond to soft constraints get priority values depending
on its weights. Objectives that have the highest weight value given in the benchmark
lead to priority 2, i.e. pr(i) = 2,∀i with maximumweight. Then, the objectives with
maximum weight are disregarded and again the objectives with maximum weight
are considered, they get priority 3. Following this, the next weights are considered
one after another. This is repeated, until a priority is assigned to each objective. The
number of priorities of the considered benchmarks ranges from 2 to 10.

For the ranking of the solutions relation Prio-ε-Preferred is used. The solutions
are compared using relationPrio-ε-Preferred. Then, the relation graph is constructed
and the SCCs of the directed graph are computed as described in Sect. 2. For the
determination of the epsilon values several methods are examined that adapt the
epsilon values automatically. In Sect. 4 several methods for the justification of the
epsilon values are proposed.
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4 Approaches for ε-Adaptation

The justification of the epsilon values for relation Prio-ε-Preferred is an interesting
task. For this in [12] the influence of the epsilon values in relation Prio-ε-Preferred
has been investigated. It has been shown that the choice of the epsilon values influ-
ences the quality of the optimization. A method called AEP (Adapted Epsilon Pre-
ferred) has been proposed that adapts the epsilon values automatically. AEP is a
straight forward method that computes the same epsilon value for all objectives. In
this section more sophisticated methods for the adaptation of the epsilon values are
presented. The methods examined in the experiments are described in the following:

Adapted Epsilon Preferred (AEP) [12]. In method AEP for all objectives one
epsilon value is determined. Therefore, one individual out of the best Satisfia-
bility class (SC) derived by relation Prio-ε-Preferred is randomly chosen. The
new epsilon value is determined by the average value of all objectives of that
individual:

ε =
m∑

j=1

I ndbest, j

m
(12)

where I ndbest, j is the j th objective of an randomly chosen individual out of the
best SC. The epsilon value is updated in each generation. The idea behind this
method is that individuals can be distinguished by relation Prio-ε-Preferred, if
the difference of the individuals exceeds the calculated average range.

Median Epsilon Preferred (MEP). InmethodMEPone separated epsilon value for
each objective is calculated. For this all individuals in a population are considered
and for each objective the epsilon value is set to the median of each objective:

ε j = median({I ndi, j |1 ≤ i ≤ |P|}), 1 ≤ j ≤ m (13)

where m is the number of objectives, |P| is the size of the population and I ndi, j

is the j th objective of the i th individual in population P .
Self-adaptation 1 (SA1). For each objective a separated epsilon value is calculated.

First, the epsilon values are initialized usingmethodAEP. Then in each generation
a randomly chosen epsilon value is decremented. If this reduces the number of
SCs, this step is revised. The idea is that a higher number of SCs leads to a
meaningful ranking of the solutions.

Self-adaptation 2 (SA2). Again, for each objective a separated epsilon value is cal-
culated. The epsilon values are initialized using method AEP. Then in each gen-
eration for a randomly chosen objective the epsilon is bisected, if the set of best
elements has not changed for 100 generations. The idea is to give more restriction
in the ranking mechanism, if the optimization is in progress.
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Table 1 Properties of benchmarks for the NRP

Benchmark Rules/objectives Priorities Employees Days

Millar-2Shift-DATA1 11 2 8 14

WHPP 12 2 30 14

Valouxis-1 15 4 16 28

GPost 42 6 8 28

ORTEC01 92 10 16 31

Table 2 Comparison of standard methods

MOO model [12] Proposed MOO model

Benchmark Objectives Weighted Sum AEP NSGA-II AEP

Millar-2Shift-DATA1 11 1310 1590 1390 1190

WHPP 12 29 - 133 27

Valouxis-1 15 13986 16692 148500 13542

GPost 42 7159 7557 26528 11830

ORTEC01 92 9132 11672 36740 10040

5 Experimental Results

In this section the experimental results of the presented approaches are described.
The benchmarks for the NRP are taken from [23]. and its properties are summarized
in Table1. The optimization rules given in the benchmark directly correspond to
the objectives (column Rules/Objectives). The number of different priorities of the
objectives are given in column Priorities. Columns Employees and Days show the
benchmarks’ number of employees and the planning period, respectively. For each
benchmark and for each method presented in Sect. 4 the EA is run 10 times with
different random seeds. Then, the average value over these 10 runs is calculated. The
population size is set to 50 and the EA runs for 5000 generations. The average values
of the presented approaches are given in Tables2 and 3. The methods are compared
using theWeighted Sum. For this, the objectives are transferred into a single objective
fitness function, such that the weights in the benchmarks are taken to weight each
objective.2

In a first series of experiments the proposed model for MOO, where for each rule
an objective is defined, is compared to the restricted model from [12]. There only
hard and soft constraints are considered as optimization objectives. For both models
method AEP from [12] is applied to the NRP. The average values can be seen in
columns AEP of Table2. The results can be improved, if a refinement of the model
for MOO as proposed in this paper is performed.

2Originally the benchmarks are designed for optimization using a Weighted Sum. Thus, the weights
are justified by a planner and directly given in the benchmark.



34 N. Drechsler

Table 3 Comparison of ε-adaptation methods for the proposed MOO model

Benchmark Objectives Weighted Sum NSGA-II AEP MEP SA1 SA2

Millar-2Shift-DATA-1 11 1310 1390 1190 1540 1280 1220

WHPP 12 29 133 27 32 27 24

Valouxis-1 15 13986 148500 13542 12890 11852 13132

GPost 42 7159 26528 11830 12300 13006 11401

ORTEC01 92 9132 36740 10040 10927 11549 10618

Additionally, AEP is compared to NSGA-II [3], which is a basic method in
evolutionary multi-objective optimization (see column NSGA-II). For comparison,
analogously to Prio-ε-Preferred NSGA-II is extended such that it can also handle
priorities.3 Thus, it is comparable to the methods that are based on relation Prio-
ε-Preferred. Furthermore, it can be seen that AEP outperforms NSGA-II for each
considered benchmark. Especially for Valouxis-1 an improvement of more than 90%
can be observed. Furthermore, a comparison to an approach that is based onWeighted
Sums is given. It is a single objective evolutionary algorithm, where the weights in
the benchmarks are used to calculate the fitness function. The comparison shows that
for most benchmarks the overall quality has been improved.

In a next series of experiments the approaches for adaptation of the epsilon values
presented in this paper are compared. The results are summarized in columns MEP,
SA1 and SA2 of Table3. A comparison to NSGA-II in Table2 shows that MEP fails
only for one example (Millar-2Shift-DATA1), whereas the self-adaptive approaches
SA1 and SA2 improve NSGA-II for all benchmarks. For three out of the considered
benchmarks both methods compute better results than the weighted sum approach.
Notice, the benchmarks are designed such that optimization with Weighted Sums can
easily be performed, i.e. the weights are specified in the benchmark. Thus, even these
results can be improved, if the full potential of the proposedmodel formany-objective
optimization is used. Only for benchmarks GPost and ORTEC01 SA1 and SA2 fail
to calculate the best results. Both benchmarks consist of 42 and more objectives.
A comparison shows that AEP can be improved using the self-adapting techniques
SA1 and SA2. It is focus of current work to investigate the self-adapting techniques
such that also problems with a higher number of objectives are solved sufficiently.

To give an impression on the quality of the priority based optimization presented
above a solution element out of the best SC derived by SA1 is compared to an element
from the non-dominated set derived by NSGA-II. In Figs. 4 and 5 a comparison for
benchmarks Valouxis-1 and WHPP is shown. The objectives and its priorities are

3The main reason for using NSGA-II for comparison is that it can easily be enlarged such that it
can handle priorities as described in this paper. Other methods like e.g. Hype [4] are more suitable
for Many-Objective Optimization, but it is not obvious how to incorporate the priorities. This is an
interesting task for further developments.
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Fig. 4 Comparison of solutions: benchmark Valouxis-1

Fig. 5 Comparison of solutions: benchmark WHPP

specified at the x-axis. For benchmark Valouxis-1 it can be seen, that the solution
obtained by SA1 has only 5 objectives over zero, whereas NSGA-II has 10 objectives
over zero. This means that the solution obtained by SA1 is Preferred to the solution
obtained by method NSGA-II. Additionally, if the absolute values of the objectives
are compared, SA1 performs better than NSGA-II. The same observation holds for
benchmark WHPP. For this example the objectives with priorities 1 and 2 are solved
optimally. For objectives with priority 3 it can be observed that the solution obtained
by SA1 even Dominates the solution from NSGA-II.
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6 Conclusions

In this paper a model for Many-Objective Optimization, i.e. optimization problems
with more than three objectives, based on the Prio-ε-Preferred relation has been
investigated. For this, heuristics for the determination of the epsilon values are
presented. The model is applied to the Nurse Rostering Problem, a resource plan-
ning problem where different working shifts have to be assigned to the nurses in a
hospital. To compare the proposed methods experiments on benchmark examples
are performed. It turned out that using self-adapting mechanisms for the adaption
of the epsilon value NSGA-II and an approach based on Weighted Sums can be
outperformed.

Acknowledgments I’d like to thank André Sülflow and Rolf Drechsler for helpful discussions and
comments and for their contributions to previous work.

References

1. Fonseca, C., Fleming, P.: An overview of evolutionary algorithms in multiobjective optimiza-
tion. Evol. Comput. 3(1), 1–16 (1995)

2. Zitzler, E., Thiele, L.: Multiobjective evolutionary algorithms: a comparative case study and
the strength pareto approach. IEEE Trans. Evol. Comput. 3(4), 257–271 (1999)

3. Deb,K.:Multi-objectiveOptimization usingEvolutionaryAlgorithms.Wiley,NewYork (2001)
4. Bader, J., Zitzler, E.: HypE: an algorithm for fast hypervolume-based many-objective opti-

mization. Evol. Comput. 19(1), 45–76 (2011)
5. Drechsler, N., Drechsler, R., Becker, B.: Multi-objective optimisation based on relation favour.

In: International Conference on Evolutionary Multi-Criterion Optimization, pp. 154–166
(2001)

6. Hughes, E.: Radar waveform optimization as a many-objective application benchmark. In:
International Conference on Evolutionary Multi-Criterion Optimization, pp. 700–714 (2007)

7. Pizzuti, C.: Amultiobjective genetic algorithm to find communities in complex networks. IEEE
Trans. Evol. Comput. 16(3), 418–430 (2012)

8. Schmiedle, F., Drechsler, N., Große,D.,Drechsler, R.: Priorities inmulti-objective optimization
for genetic programming. In: Genetic and Evolutionary Computation Conference, pp. 129–136
(2001)

9. Wickramasinghe, U., Li, X.: A distance metric for evolutionary many-objective optimization
algorithms using user-preferences. In: 22nd Australasian Joint Conference on Advances in
Artificial Intelligence (AI’09), pp. 443–453 (2009)

10. Auger, A., Bader, J., Brockhoff, D., Zitzler, E.: Articulating user preferences in many-objective
problems by sampling the weighted hypervolume. In: Genetic and Evolutionary Computation
Conference, pp. 555–562 (2009)

11. Wagner, T., Trautmann, H.: Integration of preferences in hypervolume-based multiobjective
evolutionary algorithms by means of desirability functions. IEEE Trans. Evol. Comput. 14(5),
688–701 (2012)

12. Drechsler, N., Sülflow, S., Drechsler, R.: Incorporating user preferences inmany-objective opti-
mization using relation ε-preferred. In: International Conference on Evolutionary Computation
Theory and Applications (2013)

13. Geiger, M.: Multi-criteria curriculum-based course timetabling—a comparison of a weighted
sum and a reference point based approach. In: International Conference on EvolutionaryMulti-
Criterion Optimization, pp. 290–304 (2009)



Self-adaptive Evolutionary Many-Objective Optimization … 37

14. Goldberg, D.: Genetic Algorithms in Search Optimization and Machine Learning. Addison-
Wesley Publisher Company, Inc, Reading (1989)

15. Corne, D., Knowles, J.: Techniques for highly multiobjective optimization: theorie and appli-
cations. In: Genetic and Evolutionary Computation Conference, pp. 773–780 (2007)

16. Ishibuchi, H., Tsukamoto, N., Nojima, Y.: Evolutionary many-objective optimization: a short
review. In: IEEE Congress on Evolutionary Computation, pp. 2424–2431 (2008)

17. Sülflow, A., Drechsler, N., Drechsler, R.: Robust multi-objective optimization in high-
dimensional spaces. In: International Conference on Evolutionary Multi-Criterion Optimiza-
tion, pp. 715–726 (2007)

18. Zhang, Q., Li, H.: Moea/d: a multiobjective evolutionary algorithm based on decomposition.
IEEE Trans. Evol. Comput. 11(6), 712–731 (2007)

19. Deb, K., Thiele, L., Laumanns, M., Zitzler, E.: Scalable test problems for evolutionary multi-
objective optimization. Technical Report 112, Computer Engineering andNetworksLaboratory
(TIK), Swiss Federal Institute of Technology (ETH), Zurich, Switzerland (2001)

20. Burke, E., Curtois, T., Qu, R., Vanden-Berghe, G.: Problem model for nurse rostering
benchmark instances. Technical report, ASAP, School of Computer Science, University of
Nottingham, UK (2012)

21. Cormen, T., Leierson, C., Rivest, R.: Introduction to Algorithms.MIT Press, Cambridge (1990)
22. Burke, E.,Causmaecker, P.D.,Berghe,G., Landeghem,H.: The state of the art of nurse rostering.

J. Sched. 7, 441–499 (2004)
23. Benchmarks: Employee scheduling benchmark data set: Technical report, ASAP,

School of Computer Science, The University of Nottingham, UK (2012).
http://www.cs.nott.ac.uk/~tec/nrp/

http://www.cs.nott.ac.uk/~tec/nrp/


http://www.springer.com/978-3-319-23391-8


	Self-adaptive Evolutionary Many-Objective Optimization Based on Relation ε-Preferred
	1 Introduction
	2 Preliminaries
	2.1 Multi-objective Optimization
	2.2 Relation Preferred
	2.3 Relation  ε-Preferred 
	2.4 Relation Prio-ε-Preferred

	3 Nurse Rostering Problem
	3.1 Problem Description
	3.2 Proposed Model for Many-Objective Optimization

	4 Approaches for ε-Adaptation
	5 Experimental Results
	6 Conclusions
	References


