Contents

1 Introduction ... 1

2 Requirements for Spacecraft Materials 7
 2.1 General Background .. 7
 2.2 Considerations for Materials and Processes 10
 2.2.1 General Considerations During the Selection of Materials and Processes ... 10
 2.2.2 Some Futuristic Ideas ... 11
 2.2.3 Some Basic Considerations Regarding Corrosion Prevention ... 17
 2.2.4 Space Project’s Phases and Management Events 20
 2.3 The Effect of a Space Environment 22
 2.4 Materials for Space Launch Vehicles 28
 2.5 Non-metallic Materials .. 38
 2.5.1 General ... 38
 2.5.2 Classes of Non-metallic Materials 42
 2.5.3 Novel Non-metallics ... 43
 2.6 The Potential for Welding and Joining in a Space Environment . 49
 2.6.1 Background Considerations 49
 2.6.2 Potential Joining and Cutting Processes 50
 2.6.3 Expectations ... 53

3 The Integration of ‘Materials’ into Product Assurance Schemes 55
 3.1 General Product Assurance and the Role of Materials 55
 3.1.1 Product Assurance Management 55
 3.1.2 Quality Assurance ... 55
 3.1.3 Reliability and Safety .. 57
 3.1.4 Materials and Processes .. 59
 3.1.5 Component Part Selection, and Procurement 61
 3.1.6 Control of Ground-Handling Facilities 63
 3.2 The Materials Laboratory .. 66
 3.2.1 Major Objectives of Laboratory 66
 3.2.2 Facilities and Instrumentation 67
 3.2.3 The Use of New Laboratory Techniques for NDT 85
 3.2.4 Organic Chemistry and Environmental Test Laboratories 98
 3.3 Preparation of Materials and Metallographic Evidence 100
 3.3.1 The Metallographer .. 100
 3.3.2 Laboratory Records and Reports 101
 3.3.3 Report of Materials Data to Spacecraft Projects 101
 3.3.4 Training of Materials Engineers and Laboratory Staff 103
 3.3.5 Ethical Issues ... 104
3.4 The Future for Materials Failure Investigations.
3.4.1 The Larger Company
3.4.2 The Smaller Company
3.4.3 Product Liability
3.5 ‘Greener’ Spacecraft
3.6 The Potential for Recycling Electronic Waste.
3.6.1 General
3.6.2 Elemental Distribution for Spacecraft Electronic Box

4 Spacecraft Manufacturing—Failure Prevention and the Application of Material Analysis and Metallography
4.1 Sources of Failure
4.2 Drawings and Workmanship
4.2.1 Design and Manufacturing Drawings.
4.2.2 Workmanship Standards
4.3 Mechanical Damage Revealed by Microstructure
4.4 Hydrogen Embrittlement
4.4.1 Interaction of Metal with Hydrogen
4.4.2 Hydrogen Embrittlement of Spring Steel
4.4.3 Blistering of Plated Aluminium Alloy
4.4.4 Examination for Titanium Hydride Precipitates.
4.4.5 Embrittlement of Copper
4.4.6 Future Developments
4.5 General Corrosion Problems
4.5.1 Bimetallic Corrosion-Related Failures
4.5.2 Corrosion Resistance of Anodic and Chemical Conversion Coatings on Al 2219 Alloy
4.5.3 Evaluation of Alodine Finishes on Common Spacecraft Aluminium Alloys
4.5.4 Cleaning, Passivation, and Plating of Spacecraft Steels
4.5.5 Launch Site Exposure and Corrosion.
4.6 Stress-Corrosion Resistance of Metals
4.6.1 Stress-Corrosion Cracking
4.6.2 SCC Evaluation
4.6.3 The Properties of Spring Materials
4.6.4 Bearing Materials
4.7 Control of Printed Circuit Boards
4.7.1 Chemical Composition of Tin-Lead from Microstructure
4.7.2 Grainy Solder Coverage on PCBs and the Effects of Rework
4.7.3 Evaluation of Multiplayer Board Internal Connections.
4.7.4 Flexible Circuits.
4.7.5 Hot-Air-Levelled Circuit Boards
4.7.6 Solder Assembly of Component Packages onto Multilayer Boards with High Heat Capacity
4.8 Control of Composite Materials
4.8.1 Metal–Matrix Composites for Space Structures
4.8.2 Composite Contact Devices
4.8.3 Fibre-Reinforced Plastic Composites
4.8.4 Fibre-Reinforced Glass Ceramics
4.8.5 Carbon–Carbon Composites
4.8.6 Metal Matrix Composites for Spacecraft Pressure Vessels

Contents
<table>
<thead>
<tr>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.9</td>
</tr>
<tr>
<td>4.10</td>
</tr>
<tr>
<td>4.10.1</td>
</tr>
<tr>
<td>4.10.2</td>
</tr>
<tr>
<td>4.11</td>
</tr>
<tr>
<td>4.12</td>
</tr>
<tr>
<td>4.13</td>
</tr>
<tr>
<td>4.13.1</td>
</tr>
<tr>
<td>4.13.2</td>
</tr>
<tr>
<td>4.13.3</td>
</tr>
<tr>
<td>4.13.4</td>
</tr>
<tr>
<td>4.13.5</td>
</tr>
<tr>
<td>4.13.6</td>
</tr>
<tr>
<td>4.14</td>
</tr>
<tr>
<td>4.14.1</td>
</tr>
<tr>
<td>4.14.2</td>
</tr>
<tr>
<td>4.14.3</td>
</tr>
<tr>
<td>4.15</td>
</tr>
<tr>
<td>4.16</td>
</tr>
<tr>
<td>4.17</td>
</tr>
<tr>
<td>4.18</td>
</tr>
<tr>
<td>4.19</td>
</tr>
<tr>
<td>4.20</td>
</tr>
<tr>
<td>4.20.1</td>
</tr>
<tr>
<td>4.20.2</td>
</tr>
<tr>
<td>4.20.3</td>
</tr>
<tr>
<td>4.21</td>
</tr>
<tr>
<td>4.21.1</td>
</tr>
<tr>
<td>4.21.2</td>
</tr>
<tr>
<td>4.21.3</td>
</tr>
<tr>
<td>4.21.4</td>
</tr>
<tr>
<td>4.21.5</td>
</tr>
<tr>
<td>4.21.6</td>
</tr>
<tr>
<td>4.22</td>
</tr>
<tr>
<td>4.23</td>
</tr>
<tr>
<td>4.24</td>
</tr>
<tr>
<td>4.24.1</td>
</tr>
<tr>
<td>4.24.2</td>
</tr>
<tr>
<td>4.24.3</td>
</tr>
<tr>
<td>4.25</td>
</tr>
<tr>
<td>4.25.1</td>
</tr>
<tr>
<td>4.25.2</td>
</tr>
<tr>
<td>4.26</td>
</tr>
<tr>
<td>4.27</td>
</tr>
<tr>
<td>4.28</td>
</tr>
</tbody>
</table>
5 Metallography Applied to Spacecraft Test Failures

5.1 Application of Electron Microscope

5.1.1 SEM Examination of Fracture Surfaces

5.1.2 TEM Examination of Metallic Failures

5.2 Fasteners

5.2.1 Spacecraft Fasteners

5.2.2 Fastener Failure Due to Forging Defect

5.2.3 Laps and Surface Irregularities in Threads

5.2.4 Hydrogen Embrittlement of Steel Fasteners

5.2.5 Embrittlement of Titanium Alloys

5.2.6 Galvanic Corrosion of Fasteners

5.2.7 Contamination and Organic Fastener Lubrication Systems

5.2.8 Metallic Particle Generation

5.2.9 Quality Assurance Controls for Fasteners

5.3 Thermal History from Microstructure

5.4 Effect of Inclusions Within the Microstructure of Explosively Deformed Material

5.5 Degradation of Passive Thermal Control Systems

5.5.1 General Background

5.5.2 Low-Emissivity Surfaces

5.5.3 High-Absorption Surfaces

5.5.4 Rigid Optical Solar Reflectors

5.5.5 Flexible Second Surface Mirrors

5.6 Sublimation of Metals

5.6.1 General

5.6.2 Sublimation of and Condensation of Cadmium and Zinc

5.6.3 Heater Sublimation Problem Associated with Thruster Motor

5.6.4 Sublimation of Klystron Cathode-Heaters

5.6.5 Sublimation of Rhenium

5.7 Beryllium for Spacecraft Applications

5.7.1 General

5.7.2 Health and Safety

5.7.3 Integrity of Machined Beryllium

5.7.4 Thermal Cycling on Work-Hardened Beryllium

5.7.5 General Etching Solutions for Beryllium

5.7.6 Investigation of Microcracked Thin-Foil Detector Windows

5.7.7 Aluminium-Beryllium Alloys

5.8 Deactivation of Catalyst Particles for Hydrazine Decomposition

5.8.1 Testing Procedure

5.8.2 Material Investigation

5.8.3 Mechanism of Particle Deactivation

5.9 Cathode Emitter Degradation

5.10 Investigation of a Failed Spacecraft Antenna

5.11 The Wear of Ball Bearings

5.12 Cold Welding of Mechanisms

5.12.1 General

5.12.2 Cold Welding Due to Cyclic, Impact Loading

5.12.3 Cold-Welding Due to Fretting

5.13 Defective Black-Anodized Electrical Connector

5.14 Contaminant Particles—Identification of Their Sources
5.15 Silicone Contamination .. 310
 5.15.1 General ... 310
 5.15.2 Contamination of Black-Anodized Finish 311
 5.15.3 Contamination of Invar Moulding Tool 312
 5.15.4 Removal of Silicone Polymers 314
 5.15.5 Contamination of Aluminium Tubes for Vacuum Pinch-Offs 317
5.16 Magnetic Problems .. 317
5.17 Thermal Stress-Induced Dimensional Changes 319
 5.17.1 General Problems ... 319
 5.17.2 Stress-Relaxation by Thermal Gradients 319
 5.17.3 Thermally Induced Vibrations 321
5.18 Defects in Titanium Piece-Parts 323
 5.18.1 General ... 323
 5.18.2 Alpha-Case Embrittlement 323
 5.18.3 Titanium Hydride Embrittlement 324
5.19 Leaking Water Tank on Launcher 325
5.20 Compatibility of Liquid and Solid Propellants with Components and Subsystems 326

6 Failure Analysis of Electrical Interconnections and Recommended Processes .. 329
6.1 Material Problems .. 329
6.2 Welded Lead Wire Interconnections 329
6.3 ‘Purple Plague’ ... 332
6.4 Mechanical Electrical Connections 337
 6.4.1 General ... 337
 6.4.2 Wire-Wrapped Connections 337
 6.4.3 Crimped Joints .. 339
6.5 Soldered Interconnections ... 340
 6.5.1 Introduction to Soldering 340
 6.5.2 Inspection of Soldered Joints 341
 6.5.3 The Effect of Thermal Fatigue on Solder-Assembled Leaded Components .. 344
 6.5.4 Effect of Thermal Fatigue on Leadless Components 351
 6.5.5 The Effect of Thermal Fatigue on Semi-rigid Cable Connections .. 353
6.6 Problems Associated with Coatings for Soldering Applications 357
 6.6.1 The Need for Coatings .. 357
 6.6.2 Surfaces that Can Be ‘Soldered To’ 357
 6.6.3 Surfaces that Can Be ‘Soldered Through’ 359
6.7 The Use of Indium Solder Alloys 363
6.8 Wires and Cables ... 369
 6.8.1 Selection of Plated Finish on Copper Conductors 369
 6.8.2 Effect of Ageing on the Solderability of Tin-Plated and Silver-Plated Wires .. 371
 6.8.3 ‘Red Plague’ Corrosion of Silver-Plated Copper, and Plagues on Other Plated Stranded Wires 375
 6.8.4 Manganin Wire .. 379
 6.8.5 High-Voltage Wires, Cables, and Connections 380
 6.8.6 Cold Welding of Stranded Wires and Cables 380
6.9 Problems Associated with Soldering Fluxes .. 380
6.9.1 Purpose of a Flux ... 380
6.9.2 Heat-Shrinkable Sleeves Containing Solder Preforms 381
6.9.3 Stress Corrosion of Component Lead Material 383
6.9.4 Flux-Corrosion of Silver-Plated Stranded Wires 383
6.9.5 Selection of a Soldering Flux or a Solderable Finish 386
6.9.6 Control of Galvanic Corrosion .. 389
6.9.7 Cleaning of Flux-Contaminated Surfaces ... 389
6.9.8 Flux Residues, Their Ingress into Top-Coat of PCB Surfaces, and Bake Out After Cleaning .. 391
6.9.9 Conductive Anodic Filament (CAF) Formation and Particulate Contamination .. 394
6.9.10 Potential Health Hazards in the Electronic Assembly Area 398

6.10 Problems Associated with Brazing .. 399
6.10.1 Design Considerations ... 399
6.10.2 Brazeability of Materials and Braze Alloy Compositions 400
6.10.3 Brazing Fluxes and Their Removal .. 403
6.10.4 Atmospheres for Brazing ... 404
6.10.5 Safety Precautions .. 405
6.10.6 Produce Assurance Applied to Brazing Operations 405
6.10.7 Inspection Criteria for Brazed Aluminium Alloy Waveguide-to-Flange Joints .. 406

6.11 Diffusion Soldering/Brazing .. 408

6.12 Effects of Rework and Repair on Soldered Interconnections 408
6.12.1 General .. 408
6.12.2 Cosmetics of Solder Fillets ... 410
6.12.3 Effect of Rework Electronic Components 410
6.12.4 Effect of Rework on Plated-Through Holes 410
6.12.5 Effect of Rework on Composition of Joint 412
6.12.6 Recuperation of Unsolderable PCBs and Component Leads 413

6.13 Electrical Conductive Adhesives ... 413

6.14 Training and Certification ... 415
6.14.1 General .. 415
6.14.2 Certification for Electronic Assembly Techniques 417
6.14.3 Understanding Process-Induced Failures and the Importance of Workshops .. 418

6.15 Verification of Surface-Mount Technology and Prevalent Failure Mechanisms .. 419
6.15.1 Verification Testing ... 419
6.15.2 Failure Under Mechanical Overloading ... 422
6.15.3 Failures Due to Board Flatness Problems 422
6.15.4 Failure Due to Co-planarity Problems .. 423
6.15.5 Solder Joint Failure Due to Thermal Mismatch Between SMD and Substrate .. 425
6.15.6 Conductor Track Failure Due to Thermal Mismatch 428
6.15.7 Failure of RF Cables Connected by SMT 428
6.15.8 SMT Solder Joint Failure Due to Conformal Coatings 428
6.15.9 SMT Problems Related to Flux and White Residues 432
6.15.10 Area Grid Array (AGA) Packaging ... 434
6.15.11 High Voltage Interconnections and Influence of Geometry (Workmanship) on Corona Discharge 442
6.15.12 Tin Pest 448
6.15.13 Mechanical and Electrical Properties of Electronic Materials at Temperatures Down to 4.2 K 451

7 Whisker Growths 461
7.1 The Problem of Whisker Growth 461
7.2 Analysis of Failures Due to Whisker Growth 462
7.2.1 Molybdenum Whiskers on Metallized Miniature Circuits 462
7.2.2 Tungsten Whisker Growth Within Travelling Wave Tubes 466
7.2.3 Metal Oxide Whisker Precipitation in Glass Seals 466
7.2.4 Integrated Circuit Failure Modes Due to Electromigration—Aluminium Whisker Growth and Solder Joint Voiding 468
7.3 Tin Whisker Growths 472
7.3.1 Tin Whisker Growth on a Plated Steel Housing 472
7.3.2 Tin Whisker Growth on PCB and Other Electronic Materials During Thermal Cycling 474
7.3.3 Tin Whisker Growth on Crimp Termination Devices 479
7.3.4 The Nucleation, Growth and Mechanism of Growth of Tin Whiskers—Results from a C-Ring Test Programme 481
7.3.5 Some Properties of Tin Whiskers 485
7.4 Precautions to Avoid General Whisker Growths 491
7.5 The Creation of Lead-Free Control Plans 494
7.5.1 General 494
7.5.2 Methods for Reprocessing Pure Tin Terminations 495
7.5.3 Mitigation Approaches 498

8 Assessment of Post-flight Materials 501
8.1 General 501
8.1.1 Hardware Return from Space 501
8.1.2 Raw Materials from the Moon 501
8.1.3 Recent Investigations Using Retrieved Materials 503
8.2 Space Environmental Effects from Vacuum and Radiation 503
8.2.1 Organic Materials and Lubricants 503
8.2.2 Radiation Effects 507
8.2.3 Effects of Vacuum on Metals 508
8.3 Temperature Cycling 509
8.4 Micrometeoroids and Debris 509
8.4.1 General 509
8.4.2 Debris Emanating from Catalytic Bed Thruster Motors 512
8.4.3 Returned Hardware 514
8.4.4 Protection Shields 515
8.5 Effect of Atomic Oxygen on Materials 517
8.6 Decelerators and Heat Shield Materials 524
8.6.1 General Examples 524
8.6.2 Beryllium as a Heat Shield 528
8.6.3 Alternative Heat Shield Materials 531
8.6.4 High-Temperature Fasteners 533
Materials and Processes
for Spacecraft and High Reliability Applications
Dunn, B.D.
2016, XX, 667 p. 490 illus., 295 illus. in color.,
Hardcover
ISBN: 978-3-319-23361-1