Preface

The past 36+ years have seen the emergence of a growing desire worldwide that positive actions be taken to restore and protect the environment from the degrading effects of all forms of pollution—air, water, soil, thermal, radioactive, and noise. Since pollution is a direct or indirect consequence of waste, the seemingly idealistic demand for “zero discharge” can be construed as an unrealistic demand for zero waste. However, as long as waste continues to exist, we can only attempt to abate the subsequent pollution by converting it to a less noxious form. Three major questions usually arise when a particular type of pollution has been identified: (1) How serious are the environmental pollution and water resources crisis? (2) Is the technology to abate them available? and (3) Do the costs of abatement justify the degree of abatement achieved for environmental protection and water resources conservation? This book is one of the volumes of the Handbook of Environmental Engineering series. The principal intention of this series is to help readers formulate answers to the above three questions.

The traditional approach of applying tried-and-true solutions to specific environmental and water resources problems has been a major contributing factor to the success of environmental engineering, and has accounted in large measure for the establishment of a “methodology of pollution control.” However, the realization of the ever-increasing complexity and interrelated nature of current environmental problems renders it imperative that intelligent planning of pollution abatement systems be undertaken. Prerequisite to such planning is an understanding of the performance, potential, and limitations of the various methods of environmental protection available for environmental scientists and engineers. In this series of handbooks, we will review at a tutorial level a broad spectrum of engineering systems (natural environment, processes, operations, and methods) currently being utilized, or of potential utility, for pollution abatement and environmental protection. We believe that the unified interdisciplinary approach presented in these handbooks is a logical step in the evolution of environmental engineering.

Treatment of the various engineering systems presented will show how an engineering formulation of the subject flows naturally from the fundamental
principles and theories of chemistry, microbiology, physics, and mathematics. This emphasis on fundamental science recognizes that engineering practice has in recent years become more firmly based on scientific principles rather than on its earlier dependency on empirical accumulation of facts. It is not intended, though, to neglect empiricism where such data lead quickly to the most economic design; certain engineering systems are not readily amenable to fundamental scientific analysis, and in these instances we have resorted to less science in favor of more art and empiricism.

Since an environmental water resources engineer must understand science within the context of applications, we first present the development of the scientific basis of a particular subject, followed by exposition of the pertinent design concepts and operations, and detailed explanations of their applications to environmental conservation or protection. Throughout the series, methods of mathematical modeling, system analysis, practical design, and calculation are illustrated by numerical examples. These examples clearly demonstrate how organized, analytical reasoning leads to the most direct and clear solutions. Wherever possible, pertinent cost data have been provided.

Our treatment of environmental water resources engineering is offered in the belief that the trained engineer should more firmly understand fundamental principles, be more aware of the similarities and/or differences among many of the engineering systems, and exhibit greater flexibility and originality in the definition and innovative solution of environmental system problems. In short, the environmental and water resources engineers should by conviction and practice be more readily adaptable to change and progress.

Coverage of the unusually broad field of environmental water resources engineering has demanded an expertise that could only be provided through multiple authorships. Each author (or group of authors) was permitted to employ, within reasonable limits, the customary personal style in organizing and presenting a particular subject area; consequently, it has been difficult to treat all subject materials in a homogeneous manner. Moreover, owing to limitations of space, some of the authors’ favored topics could not be treated in great detail, and many less important topics had to be merely mentioned or commented on briefly. All authors have provided an excellent list of references at the end of each chapter for the benefit of the interested readers. As each chapter is meant to be self-contained, some mild repetitions among the various texts have been unavoidable. In each case, all omissions or repetitions are the responsibility of the editors and not the individual authors. With the current trend toward metrication, the question of using a consistent system of units has been a problem. Wherever possible, the authors have used the British system (fps) along with the metric equivalent (mks, cgs, or SIU) or vice versa. The editors sincerely hope that this redundancy of units’ usage will prove to be useful rather than being disruptive to the readers.

The goals of the *Handbook of Environmental Engineering* series are: (1) to cover entire environmental fields, including air and noise pollution control, solid waste processing and resource recovery, physicochemical treatment processes, biological treatment processes, biotechnology, biosolids management, flotation technology,
membrane technology, desalination technology, water resources, natural control processes, radioactive waste disposal, hazardous waste management, and thermal pollution control; and (2) to employ a multimedia approach to environmental conservation and protection since air, water, soil, and energy are all interrelated.

This book (Volume 16) and its two sister books (Volumes 14–15) of the Handbook of Environmental Engineering series have been designed to serve as a water resources engineering reference books as well as a supplemental textbooks. We hope and expect they will prove of equal high value to advanced undergraduate and graduate students, to designers of water resources systems, and to scientists and researchers. The editors welcome comments from readers in all of these categories. It is our hope that the three water resources engineering books will not only provide information on water resources engineering, but will also serve as a basis for advanced study or specialized investigation of the theory and analysis of various water resources systems.

This book, Advances in Water Resources Management, Volume 16, covers the topics on multi-reservoir system operation theory and practice, management of aquifer systems connected to streams using semi-analytical models, one-dimensional model of water quality and aquatic ecosystem-ecotoxicology in river systems, environmental and health impacts of hydraulic fracturing and shale gas, bioaugmentation for water resources protection, wastewater renovation by flotation for water pollution control, determination of receiving water’s reaeration coefficient in the presence of salinity for water quality management, sensitivity analysis for stream water quality management, river ice process, and mathematical modeling of water properties.

This book’s first sister book, Advances in Water Resources Engineering, Volume 14, covers the topics on watershed sediment dynamics and modeling, integrated simulation of interactive surface water and groundwater systems, river channel stabilization with submerged vanes, non-equilibrium sediment transport, reservoir sedimentation, and fluvial processes, minimum energy dissipation rate theory and applications, hydraulic modeling development and application, geophysical methods for assessment of earthen dams, soil erosion on upland areas by rainfall and overland flow, geofluvial modeling methodologies and applications, and environmental water engineering glossary.

This book’s second sister book, Modern Water Resources Engineering, Volume 15, covers the topics on principles and applications of hydrology, open channel hydraulics, river ecology, river restoration, sedimentation and sustainable use of reservoirs, sediment transport, river morphology, hydraulic engineering, GIS, remote sensing, decision-making process under uncertainty, upland erosion modeling, machine-learning method, climate change and its impact on water resources, land application, crop management, watershed protection, wetland for waste disposal and water conservation, living machines, bioremediation, wastewater treatment, aquaculture system management and environmental protection, and glossary and conversion factors for water resources engineers.

The editors are pleased to acknowledge the encouragement and support received from Mr. Patrick Marton, Executive Editor of the Springer Science + Business
Media, and his colleagues, during the conceptual stages of this endeavor. We wish to thank the contributing authors for their time and effort, and for having patiently borne our reviews and numerous queries and comments. We are very grateful to our respective families for their patience and understanding during some rather trying times.

Newtonville, NY, USA
Fort Collins, CO, USA
Newtonville, NY, USA

Lawrence K. Wang
Chih Ted Yang
Mu-Hao S. Wang
Advances in Water Resources Management
Wang, L.K.; Yang, C.T.; Wang, M.-H.S. (Eds.)
2016, XII, 569 p. 166 illus., 71 illus. in color., Hardcover
ISBN: 978-3-319-22923-2