Contents

1 Introduction ... 1
 1.1 Preamble ... 1
 1.1.1 History of Manufacture of Sulphuric Acid in India ... 1
 1.1.2 History of Manufacture of Sulphuric Acid 2
 1.1.3 Salient Features of the Modified (3 + 2) DCDA Process ... 3

2 Chemical and Physical Properties of Sulphur Dioxide
 and Sulphur Trioxide 9
 2.1 Introduction .. 9
 2.2 Sulphur Dioxide Physical Properties 10
 2.3 Vaporisation of SO₂ 10
 2.4 The Solubility of SO₂ in Sulphuric Acid 11
 2.5 Solubility of Sulphur Dioxide in Water 12
 2.6 Chemical Properties of Sulphur Dioxide 12
 2.7 Physical Properties of Sulphur Trioxide 13
 2.8 General Properties of Liquid Sulphur Trioxide 13
 2.9 Properties of Liquid Sulphur Trioxide 14
 2.10 Viscosity of Liquid Sulphur Trioxide 15
 2.11 Specific Gravity of Sulphur Trioxide 15
 2.12 Vapour Pressure of Liquid Sulphur Trioxide 15
 2.13 Molar Heat Capacity of Liquid Sulphur Trioxide 16
 2.14 Vaporisation Curves for Sulphur Dioxide 16
 2.15 Enthalpy of Sulphur Trioxide Gas 16
 2.16 Chemical Properties of Sulphur Trioxide 17
 2.16.1 Commercially Sulphur Trioxide Is Produced
 by Converting 10–12 % SO₂ by Catalytic
 Conversion at Temperatures Between
 360–600 °C in Multipass Converter of Sulphuric
 Acid Plant .. 17
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.17</td>
<td>One of the Special Chemical Properties of SO$_3$ Which Has Been Safer but not Explored till date</td>
<td>18</td>
</tr>
<tr>
<td>2.18</td>
<td>Sulphur Trioxide Is a Strong Sulphonating Agent for Difficult, Organic and Inorganic Chemicals</td>
<td>19</td>
</tr>
<tr>
<td>2.18.1</td>
<td>Treatment of Sulphuric Acid Plant Tail Gas for Final Absorption Tower</td>
<td>19</td>
</tr>
<tr>
<td>3</td>
<td>Manufacture of Sulphonating Agents Such as 25 and 65 % Oleums as well as Liquid Sulphur Trioxide</td>
<td>21</td>
</tr>
<tr>
<td>3.1</td>
<td>Introduction</td>
<td>21</td>
</tr>
<tr>
<td>3.2</td>
<td>Production of 25 % Oleum</td>
<td>21</td>
</tr>
<tr>
<td>3.2.1</td>
<td>History</td>
<td>21</td>
</tr>
<tr>
<td>3.3</td>
<td>Technical Considerations</td>
<td>22</td>
</tr>
<tr>
<td>3.4</td>
<td>Manufacturing</td>
<td>23</td>
</tr>
<tr>
<td>3.5</td>
<td>65 % Oleum</td>
<td>23</td>
</tr>
<tr>
<td>3.5.1</td>
<td>Introduction</td>
<td>23</td>
</tr>
<tr>
<td>3.6</td>
<td>Manufacturing</td>
<td>23</td>
</tr>
<tr>
<td>3.7</td>
<td>Uses</td>
<td>24</td>
</tr>
<tr>
<td>3.8</td>
<td>Sulphur Trioxide (Liquid or Gas)</td>
<td>24</td>
</tr>
<tr>
<td>3.8.1</td>
<td>Introduction</td>
<td>24</td>
</tr>
<tr>
<td>3.9</td>
<td>Manufacture</td>
<td>25</td>
</tr>
<tr>
<td>3.10</td>
<td>Economic Considerations</td>
<td>25</td>
</tr>
<tr>
<td>4</td>
<td>Manufacture of Liquid Sulphur Dioxide</td>
<td>27</td>
</tr>
<tr>
<td>4.1</td>
<td>Manufacture of Liquid Sulphur Dioxide</td>
<td>27</td>
</tr>
<tr>
<td>4.2</td>
<td>Thermodynamic and Kinetic Consideration of the NEAT’s Process</td>
<td>28</td>
</tr>
<tr>
<td>4.3</td>
<td>International Scenario</td>
<td>29</td>
</tr>
<tr>
<td>4.4</td>
<td>Merchant Market for SO$_2$ in Various for Many Industrial Applications</td>
<td>31</td>
</tr>
<tr>
<td>4.5</td>
<td>Process Description</td>
<td>31</td>
</tr>
<tr>
<td>4.6</td>
<td>Operational Considerations</td>
<td>32</td>
</tr>
<tr>
<td>4.6.1</td>
<td>Condensation and Filling Section</td>
<td>32</td>
</tr>
<tr>
<td>4.7</td>
<td>Economics</td>
<td>32</td>
</tr>
<tr>
<td>4.8</td>
<td>Environmental Considerations</td>
<td>33</td>
</tr>
<tr>
<td>4.9</td>
<td>Conclusion</td>
<td>33</td>
</tr>
<tr>
<td>5</td>
<td>World Production of Liquid SO$_2$ and SO$_3$</td>
<td>35</td>
</tr>
<tr>
<td>5.1</td>
<td>Introduction</td>
<td>35</td>
</tr>
<tr>
<td>5.2</td>
<td>World Scenario</td>
<td>35</td>
</tr>
<tr>
<td>5.2.1</td>
<td>Comparative Analysis on Techno Economic Considerations</td>
<td>35</td>
</tr>
</tbody>
</table>
5.3 Economics of Manufacture of Liquid SO₂ 38
5.4 Economics of Manufacture of Liquid SO₃ 38
5.5 Conclusion ... 40

6 Techno Economic Evaluation of Processes Involved to Manufacture Liquid Sulphur Dioxide and Liquid Sulphur Trioxide 41
6.1 Introduction .. 41
6.2 History ... 42
6.3 Production by Burning Sulphur Cooling, Absorption in Alkali and Desorption, Drying by Sulphuric Acid, Compression and Condensation by Refrigeration. 42
6.4 Production by Use of Organic Solvent from by Product SO₂ Generated in Specific Chemical Reactions 43
6.5 Production by Use of Concentrated Oleum (65 %) and Solid Sulphur Using Compression and Refrigeration (Batch Process). .. 43
6.6 Production by Using Molten Sulphur and Liquid SO₃ Under Pressure Without Compression and Refrigeration (Adopted by NEAT) ... 43
6.7 Economic Considerations 44
6.8 Conclusion ... 44

7 Application of Sulphonation by Liquid SO₃ Dissolved in Liquid SO₂ ... 45
7.1 Introduction .. 45
7.2 Properties of Sulphamic Acid 45
7.3 Process ... 46
7.4 Uses .. 50
7.5 Conclusion ... 50

8 Impact on the Future Processes for the Manufacture of Chemicals ... 51
8.1 Introduction .. 51
8.2 Raw Materials Required 51
8.3 Major Areas in Which Experimental Work Should Be Directed .. 52
8.4 Specifications (PTSA Monohydrate) 52
8.5 Commercial Details Current Manufacturers in India 53
8.6 Applications and End Use 53
8.7 Effluent Expected ... 53
8.8 Alternate Process (Proposed) 54
8.9 Key Physical Properties for the New Process 54
9 Case Studies and Its Commercial Application 55
 9.1 Introduction .. 55
 9.2 NEAT’s Innovative “Cold Process” 56
 9.3 Para Toluene Sulphonic Acid 56
 9.4 Synthesis (Outline) .. 57
 9.5 Specifications (PTSA Monohydrate) 57
 9.6 Commercial Details .. 57
 9.7 Some Key Physical Parameters 58
 9.8 Important Inferences .. 58
 9.9 Techno Commercial Advantages of NEAT’s Innovative
 Process to Manufacture PTS Acid 59
 9.10 Case Study for Innovative Process Invented by NEAT
 to Carry Out Chloro Sulphonation of Toluene
 Without Refrigeration and CSA Plant as Raw Material
 to Manufacture Saccharine 59
 9.10.1 Introduction ... 59
 9.11 Conventional Process 59
 9.12 A Brief Description of the Innovative Process
 Is to Affect the Drawbacks in the Conventional Process
 Is Indicated in Fig. 9.1. the Main Features of the Process
 Are as Under ... 60
 9.13 Economics .. 60
 9.14 Conclusion ... 62

10 Summary ... 69

Appendices .. 71

Bibliography ... 91
Advances in Sulphonation Techniques
Liquid Sulphur Dioxide as a Solvent of Sulphur Trioxide
Ashar, N.G.
2016, XII, 91 p. 29 illus., Softcover
ISBN: 978-3-319-22640-8