Chapter 2
A Tale of Two Platforms: Commingled Remains and the Life-Course of Houses at Neolithic Çatalhöyük

Scott D. Haddow, Joshua W. Sadvari, Christopher J. Knüsel and Rémi Hadad

Introduction

The Neolithic site of Çatalhöyük is located in south-central Turkey (Fig. 2.1) and dates from roughly 7100 to 6000 cal BC (Bayliss et al. 2015). It is well-known for its large size, densely packed mudbrick houses, elaborate symbolic assemblages, and subfloor burial practices (Hodder 1996, 2000, 2013a, 2013b; Mellaart 1967). Beginning with James Mellaart’s work in the 1960s and continuing with Ian Hodder’s current excavation project begun in the mid-1990s, the site has been crucial for the study of early settled life in the Neolithic of Central Anatolia, specifically, and the wider Near East, in general. The human remains excavated at Çatalhöyük comprise one of the largest Neolithic skeletal samples in the Near East and provide great insight into the lives of Çatalhöyük’s inhabitants, their social structure, and their mortuary customs (Andrews et al. 2005; Boz and Hager 2013; Hillson...

In this chapter, we seek to build upon Boz and Hager’s (2014) discussion of the nature of commingled remains at Çatalhöyük by focusing on two skeletal assemblages found within adjacent platforms in Building 52, a house currently being excavated in the North Area of the Neolithic East Mound. The two assemblages exhibit various degrees of commingling and represent the outcome of divergent mortuary practices: one characterized by long-term, successive inhumations and the other by a single interment episode consisting of multiple individuals—a rare occurrence at the site (see Osterholtz et al. 2014: Figure 1 for definition of terms). Our aim is to demonstrate the relationship between these skeletal assemblages (and the once-living individuals they embodied) and the occupational history and abandonment of Building 52 and, in so doing, contribute to the understanding of the broader social and ritual implications of mortuary practices at Çatalhöyük.

**Mortuary Practices at Neolithic Çatalhöyük**

The overwhelming majority of burials at Çatalhöyük occur within houses, primarily underneath the northern and eastern platforms of the central room, although neonate and infant burials are found in more variable locations within the house (Andrews et al. 2005; Boz and Hager 2013). In contrast to the interpretations of James Mellaart in the 1960s (1962, 1963, 1964, 1966, 1967), the current excavations at Çatalhöyük have shown the majority of burials to be the result of primary inhumations rather than secondary deposition following defleshing (Andrews et al. 2005; Boz and Hager 2013, 2014). Along with the often extremely tight flexion of articulated skeletons found under house floors, Mellaart (1962, 1963, 1967) interpreted the presence of
disarticulated and commingled remains as evidence for secondary burial practices involving the exposure and excarnation of bodies prior to intramural burial. We now recognize that, in the majority of cases, this commingling of skeletal remains is the result of successive primary interments under house platforms, as evidenced by the presence of smaller elements such as hand and foot bones that are typically absent from secondary burials (see Boz and Hager 2014, Table 1 for a full description of the burial deposition categories used at Çatalhöyük). In some cases, however, subfloor primary burials are targeted in order to facilitate the recovery of particular skeletal elements—typically the cranium and mandible (Andrews et al. 2005; Boz and Hager 2013, 2014)—which are then reburied at some later date. This reburial of skeletal elements, often accompanying a primary interment, constitutes a secondary burial, defined here as the intentional redeposition of skeletons or skeletal elements originally interred in another location (cf. Duday 2006; Knüsel 2014). The most conspicuous example of this practice at Çatalhöyük is the primary burial of an adult female cradling a plastered cranium and mandible in her upper limbs (Boz and Hager 2013; Sadarangani 2014). Loose crania and other skeletal elements are often recovered within the subfloor grave fills of primary burials at Çatalhöyük, but it is often difficult to determine whether they represent an intentional secondary redeposition or an unintended consequence of disturbances of earlier primary burials by later ones. As a result of these highly diverse mortuary behaviors, the commingling of skeletal remains at Çatalhöyük is extremely common (Fig. 2.2). Deducing the intentionality behind

Fig. 2.2 Example of commingling of skeletal remains found at Çatalhöyük. (Photo by Jason Quinlan, Çatalhöyük Research Project)
these occurrences and distinguishing between what are essentially equifinal processes in the archaeological record requires careful attention to the stratigraphic relationships between burial sequences and grave fills as well as meticulous osteological analysis\(^1\) in order to reassociate loose skeletal elements.

**Building 52**

Building 52 is located on the northern promontory of Çatalhöyük’s East Mound (Fig. 2.3). Artifact typologies, specifically the chipped stone and ceramic assemblages, as well as stratigraphic associations date the building to the “classic” middle period of the site’s occupation (Mellaart’s Level VI and Hodder’s Level North G), ca. 6500 calBC (Farid 2014b). The house appears to have come into existence when the abutting walls of two separate buildings were knocked down in order to form a single house structure (Farid 2014a). As a result, Building 52 is somewhat idiosyncratic in terms of size and spatial organization, although its general layout at the end of its occupation is for the most part consistent with the typical house style of the “classic” period. It consisted primarily of a large central room (Space 94) and several smaller peripheral rooms dedicated to storage and other activities to its north, south, and west (Fig. 2.4). While Spaces 91/92, 93, and 255 appear to be the result of a process of internal segmentation, Spaces 90, 290, and 291 may be illustrative of the expansion of this building into the surrounding external areas during different phases of construction and occupation.

Based on previous dendrochronological and C14 analyses, the average house at Çatalhöyük was occupied for 50–100 years (Cessford et al. 2005). Microstratigraphic analyses of wall plaster layers at Çatalhöyük indicate that replastering events likely occurred on an annual basis and were tied to some form of seasonal activity (Matthews 2005c). Thus, a section of wall plaster recovered from Building 52 with 67 layers (Twiss et al. 2008) may provide a tentative use-life estimate of nearly 70 years. The occupation of Building 52 ends in a dramatic closure event characterized by an intentional fire that burned most intensely in the central area of Space 94 (Fig. 2.5) and along its party wall with Space 93 (Harrison et al. 2013; Tringham 2013; Twiss et al. 2008).

The two platforms discussed here are located in a northern alcove (Fig. 2.6) within the large central room (Space 94). Both belong to the final phase of occupation of the building. During this phase, the height of each platform was raised several times and their surfaces were replastered. Unusually, the platform surfaces were alternately painted red at different stages in their use-life (although this does not appear

---

1 Adult skeletal age-at-death estimates presented in this paper are based primarily on the morphological changes observed in the *os pubis* (Brooks and Suchey 1990) and auricular surface of the *os ilium* (Lovejoy et al. 1985). In the absence of the *os coxae*, adult age is estimated via occlusal dental wear (Brothwell 1981). Subadult age estimates are based primarily on dental development (Ubelaker 1989). In the absence of dentition, subadult age is estimated using diaphyseal shaft length measurements (Maresh 1970; Schaefer et al. 2009). Adult sex estimation is based on the evaluation of sexually dimorphic features of the pelvis, cranium, and mandible (Buikstra and Ubelaker 1994).
to correspond with burial activities). The northwest platform has a slightly larger surface area than its counterpart to the east and was more affected by the burning of the building since it is closer to the origin of the fire. The only other burials found to date in Building 52 include a child aged 4 years (+/− 1 year) at death (F.7334)
recovered from an infilling deposit used to raise a platform surface in the southwest corner of Space 94, and three neonates found in the side rooms to the west of the central room (Farid 2014a; Tung 2014). While the northeast platform has now been fully excavated, the earliest phases of the house are still being excavated, and it is possible that earlier burials will be uncovered.

The Northeast Platform

The skeletal remains of at least five individuals (three adults and two subadults), representing at least three separate burial events, were recovered from the northeast platform (Knüsel et al. 2013a). These three interments occur at distinct phases in the use-life of the northeast platform, during which the height of the platform was successively raised. The uppermost (last) burial in the sequence (F.7112) is that of a middle adult female (Sk.20655), 35–49 years of age at death, placed in a tightly flexed supine position and leaning slightly to her left with the head to the west and feet to the east (Fig. 2.7). Phytolith bands running across the ankles, right proximal
femur, and left ilium suggest that the body was tightly bound with reed cordage when it was placed in the grave. Despite being the final and most shallow interment within this platform, this individual appears to have been unaffected by the fire that consumed Building 52. No heat-related color changes are apparent on the bones, and no traces of carbonized soft tissue were found within the endocranium or anywhere else on the skeleton (as has been found in other subfloor burials within

Fig. 2.5 Building 52 (looking north) showing area of burning in central room (Space 94). (Photo by Jason Quinlan)

Fig. 2.6 3D reconstruction of the northwest and northeast platforms prior to excavation
burnt houses at Çatalhöyük), suggesting that this individual was buried long before the fire took place and with sufficient time for full decomposition of the soft tissues of the body. A disarticulated cranium and mandible belonging to a possible young adult male (Sk.20661), 20–34 years of age at death, were also found within the grave fill of this burial.

Located immediately below burial F.7112 was the primary inhumation (F.7120) of a middle adult male (Sk.30522) aged 35–49 years at death and an infant (Sk.30523) aged 2 years (+/− 8 months) at death (Fig. 2.8). This burial was cut into an earlier surface of the platform. Both of these individuals appear to have been buried in a single event. The adult was placed on his back in a tightly flexed position and oriented with the head to the west and the feet to the east. The infant, tightly flexed on its right side, was placed directly above the torso of the adult. While the remains of the lower lying adult male were undisturbed, the remains of the infant were disturbed and partially disarticulated by the grave cut for burial F.7112 described above. Three rows of small stone disc beads in various colors were found on the abdomen of the infant along with an additional string of similar beads around the left ankle. In addition, traces of red pigment were observed on the frontal bone.
and two green stone beads (possibly serpentinite) were also found, one on either side of the temporal area of the cranium. The disarticulated remains of a fifth individual were found within the lower grave fill of the grave cut. This individual is represented by the cranium and mandible of a child (Sk.30521) aged 8 years (+/− 2 years) at death. A set of disarticulated tibiae and humeri, along with a femur, likely belong to the same individual.

Burial F.7606 (Fig. 2.9), located immediately below burial F.7120, represents the earliest interment in the northeast platform burial sequence (Haddow et al. 2014; Tung 2014); in fact, it appears to immediately predate the construction of this platform, for which it may have been a foundation deposit, and was cut into an older platform belonging to an earlier phase of Building 52. The grave cut contained the primary disturbed skeleton of a young adult male (Sk.21526) aged 20–34 years at death and the disarticulated infracranial remains of a child (Sk.21525) aged 7–8 years at death found scattered throughout the grave fill. The young adult male was placed on his left side in a flexed position, with the head oriented to the west and the feet to the east. The cranium and mandible of this individual were missing, although all of the cervical vertebrae were recovered. It appears that the cranium and mandible were removed during the subsequent interment of the middle adult male (Sk.21526) and infant (Sk.21525) in F.7120.

Based on developmental similarities (i.e., dental development and diaphyseal lengths), the disarticulated child skull (e.g., cranium and mandible; Sk.30521) and disarticulated infracranial remains found in the grave fill of F.7120 were associated in the lab with the subadult remains found loose in the grave fill of earlier burial
F.7606. It is also likely that the loose adult cranium and mandible (Sk.20661) found in the grave fill of the latest burial F.7112 may belong to Sk.21526, from F.7606, as several loose teeth found in the grave fill of F.7606 appear to fit the maxillary tooth sockets of Sk.20661. The occurrence of loose subadult remains from a single individual within two separate burial features has two potential explanations: (1) the skeletal remains of the child (Sk.30521 = Sk.21525) represent an earlier primary burial predating this platform and belonging to the preceding phase, which was then completely disturbed by the subsequent burial of the young adult male (Sk.21526). In this scenario, the original grave cut was completely obliterated by the grave cut for Sk.21526 and the bones of the child were re-deposited with the grave fill of the young adult male; or (2) the disarticulated subadult remains represent a secondary deposit placed in the grave F.7606 at the same time as the primary burial of the young adult male (Sk.21526). The latter scenario appears more likely, however, as there is no trace of an earlier grave cut for the child, nor were any of its bones found in a primary *in situ* position, as is the case with the majority of disturbed burials at
Theoretical Approaches to Analysis and Interpretation of Commingled Human Remains
Osterholtz, A.J. (Ed.)
2016, XIII, 255 p. 65 illus., 40 illus. in color., Hardcover
ISBN: 978-3-319-22553-1