Contents

1 Introduction: Signals and Transforms 1
 1.1 Continuous-Time Decaying Signals 1
 1.1.1 One-Dimensional Signals 1
 1.1.2 Two-Dimensional Signals 4
 1.2 Discrete-Time Signals ... 5
 1.2.1 One-Dimensional Discrete-Time Signals 5
 1.2.2 Two-Dimensional Discrete Signals 7
References ... 8

2 Introduction: Digital Filters and Filter Banks 9
 2.1 Filtering Decaying Signals 9
 2.1.1 Filters ... 9
 2.1.2 Filter Banks .. 13
 2.1.3 Polyphase Representation 13
 2.1.4 Interpolating Filters 17
 2.2 Bases and Frames Generated by Filter Banks 20
 2.2.1 Examples of Filter Banks Implementation 21
 2.2.2 Implementation of Causal—Anticausal IIR Filters
 with a Rational Transfer Function 25
 2.3 Discrete-Time Butterworth Filters 27
References ... 30

3 Mixed Convolutions and Zak Transforms 31
 3.1 Mixed Discrete-Continuous Convolution
 and Zak Transform .. 31
 3.1.1 Mixed Discrete-Continuous Convolution 31
 3.1.2 Zak Transform of Continuous-Time Signals 32
 3.2 A Leading Example: Polynomial Splines 35
 3.2.1 B-Splines ... 35
 3.2.2 Spline Spaces 37
10.4 Wavelet Transforms of Discrete Splines 202
 10.4.1 Matrix Representation of the Two-Scale Relations ... 202
 10.4.2 Transform of Splines’ Coordinates 203
10.5 Discrete-Spline Wavelet Transform of Signals 206
 10.5.1 One Step of Discrete-Spline Wavelet Transform 206
 10.5.2 Multiscale Signal’s Transform 211
 10.5.3 Examples ... 211
References .. 214

11 Biorthogonal Wavelet Transforms 215
 11.1 Two-Channel Filter Banks 216
 11.1.1 Matrix Expression of Filter Banks 216
 11.1.2 Biorthogonal Bases Generated by PR Filter Banks ... 218
 11.1.3 Multilevel Discrete-Time Wavelet Transforms 221
 11.2 Compactly Supported Biorthogonal Wavelets 228
 11.2.1 Design of the Biorthogonal Filter Bank 228
References .. 237

12 Biorthogonal Wavelet Transforms Originating from Splines ... 239
 12.1 Lifting Scheme of Wavelet Transforms 239
 12.1.1 Primal Scheme 239
 12.1.2 Dual Scheme 240
 12.1.3 Filter Banks 241
 12.2 Filter Banks Originating from Polynomial Splines ... 245
 12.2.1 Prediction Filters Derived from Polynomial Splines . 245
 12.2.2 Filter Banks 247
 12.2.3 Examples of Filters Originating from Splines ... 252
 12.3 Filter Banks Originating from Discrete Splines 261
 12.3.1 Summary for the Discrete Splines of Span 2 261
 12.3.2 Prediction Filters 263
References .. 273

13 Data Compression Using Wavelet and Local Cosine Transforms 275
 13.1 Spatial and Spectral Meaning of Wavelet Transform Coefficients 275
 13.2 SPIHT Coding Scheme 279
 13.3 Local Cosine Transform for Data Compression 281
 13.3.1 Local Cosine Transform (LCT) 281
 13.3.2 A Hybrid Algorithm for Data Compression 282
 13.4 Numerical Examples 286
 13.4.1 Seismic Compression 287
 13.4.2 Fingerprints 289
13.4.3 Compression of Multimedia Images 291
13.4.4 Conclusions .. 295
References ... 296

14 Wavelet Frames Generated by Perfect Reconstruction
Filter Banks ... 299
14.1 Oversampled Filter Banks and Frames 300
 14.1.1 Matrix Expression of Filter Banks with the
 Downsampling Factor 2 300
 14.1.2 Frames Generated by Filter Banks 303
14.2 Design of Three-Channel Filter Banks Which
Generate Frames ... 308
 14.2.1 Interpolating Filter Banks for Frame Generation 308
 14.2.2 Frames Derived from Triangular Factorization 310
 14.2.3 Design of Frames Using Spline Filters 312
 14.2.4 2D Frame Transforms 329
14.3 Design of Four-Channel Filter Banks Which
Generate Frames ... 331
 14.3.1 Four-Channel Oversampled Filter Banks 331
 14.3.2 Low-Pass Filters 336
14.4 Four-Channel Filter Banks Using Spline Filters 340
 14.4.1 Summary of the Filter Bank Design Scheme 340
 14.4.2 Outline of the Frame Transforms’ Implementation .. 341
 14.4.3 Examples of Filter Banks with FIR Filters 343
 14.4.4 Four-Channel Filter Banks with IIR Filters 350
References ... 360

15 Biorthogonal Multiwavelets Originated from Hermite Splines 363
15.1 Preliminaries .. 364
 15.1.1 Cubic Hermite Splines 364
 15.1.2 Multifilters ... 365
15.2 Lifting Scheme of Wavelet Transform of Vector-Signals 368
15.3 Multifilter Banks 370
 15.3.1 Structure of Multifilter Banks 370
 15.3.2 Approximation Properties of Multifilters 372
15.4 Lifting Algorithms for Pre/Post-processing Phases 374
 15.4.1 An Orthogonal Scheme of Third Approximation
 Order (Haar Algorithm) 375
 15.4.2 Schemes of the Fifth Approximation Order 376
15.5 Bases for the Space of Discrete-Time Signals 380
 15.5.1 Bases of Zero Level 380
 15.5.2 Bases of the First Level 381
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>15.6</td>
<td>Extension of the Multiwavelet Transforms to Coarser Levels</td>
<td>388</td>
</tr>
<tr>
<td>15.7</td>
<td>Two-Dimensional Multiwavelet Transforms</td>
<td>391</td>
</tr>
<tr>
<td>References</td>
<td></td>
<td>392</td>
</tr>
<tr>
<td>16</td>
<td>Multiwavelet Frames Originated From Hermite Splines</td>
<td>393</td>
</tr>
<tr>
<td>16.1</td>
<td>Oversampled Multifilter Banks</td>
<td>394</td>
</tr>
<tr>
<td>16.1.1</td>
<td>Three-Channel Multifilter Banks</td>
<td>394</td>
</tr>
<tr>
<td>16.1.2</td>
<td>Bases of Zero Level</td>
<td>395</td>
</tr>
<tr>
<td>16.1.3</td>
<td>Analysis Filter Banks of the First Level</td>
<td>396</td>
</tr>
<tr>
<td>16.1.4</td>
<td>Synthesis Filter Banks of the First Level</td>
<td>397</td>
</tr>
<tr>
<td>16.2</td>
<td>Multiwavelet Frames</td>
<td>398</td>
</tr>
<tr>
<td>16.2.1</td>
<td>Signal’s Expansion Over the First-Level Multi-frame</td>
<td>398</td>
</tr>
<tr>
<td>16.2.2</td>
<td>Extension of the Multi-frame Transforms to Coarser Levels</td>
<td>399</td>
</tr>
<tr>
<td>16.3</td>
<td>Design of Multifilter Banks Generating Frames</td>
<td>401</td>
</tr>
<tr>
<td>16.3.1</td>
<td>Design Scheme</td>
<td>401</td>
</tr>
<tr>
<td>16.3.2</td>
<td>Transfer Functions of the Multifilter Banks</td>
<td>402</td>
</tr>
<tr>
<td>16.3.3</td>
<td>Example: Framelets Originating From the Haar Pre-Post-processing Scheme (j = 0):</td>
<td>404</td>
</tr>
<tr>
<td>References</td>
<td></td>
<td>407</td>
</tr>
<tr>
<td>Appendix A</td>
<td>Guide to SplineSoftN</td>
<td>409</td>
</tr>
<tr>
<td>Glossary</td>
<td></td>
<td>421</td>
</tr>
<tr>
<td>Index</td>
<td></td>
<td>423</td>
</tr>
</tbody>
</table>
Splines and Spline Wavelet Methods with Applications to Signal and Image Processing
Volume II: Non-Periodic Splines
Averbuch, A.Z.; Neittaanmaki, P.; Zheludev, V.A.
2016, XXV, 426 p. 129 illus., 87 illus. in color., Hardcover
ISBN: 978-3-319-22302-5