Contents

1 Introduction ... 1
 1.1 Introduction 1
 1.1.1 A Brief Historical Review of Wind Energy 1
 1.1.2 The Aerodynamics of Wind Turbines 3
 References ... 6

2 Basic Definitions .. 7

3 One-Dimensional Axial Momentum Theory 9
 3.1 Basics of Axial Momentum Theory 10
 3.2 Assessment of Basic Assumptions of 1D Momentum Theory ... 11
 3.3 Assessment of Axial Momentum Theory on Differential Form ... 14
 3.4 One-Dimensional Momentum Theory Applied to a Diffuser-Augmented Wind Turbine 17
 3.5 Wind Tunnel Corrections Using Axial Momentum Theory 23
 3.5.1 Wind Tunnel Correction for Closed Test Section 24
 3.5.2 Wind Tunnel Correction for Open Test Section 28
 3.6 Axial Momentum Theory Applied to Wind Turbine-Driven Vehicle 33
 3.6.1 Mechanical System Without Losses 33
 3.6.2 Mechanical System With Losses 38
 References ... 41

4 The General Momentum Theory 43
 4.1 General Equations 43
 4.2 The Glauert Model 49
 4.3 The Model of Burton et al. 50
 4.4 The Model of Joukowsky 51
 4.5 Discussion and Assessment of the Validity of the General Momentum Theory 53
 References ... 58
5 Optimum Rotor Performance Based on Momentum Theory

5.1 The Optimum Power Coefficient
5.2 The Optimum Rotor Model of Glauert
5.3 The Optimum Rotor Model of Burton, Sharpe et al.
5.4 The Optimum Rotor Model of Joukowsky
5.5 A Modified Optimum Glauert Rotor Model
5.6 A Modified Optimum Joukowsky Model
5.7 Comparison of the Performance of Optimum Rotor Models
5.8 Design and Comparison of Blade Geometries for Optimum Rotors
5.8.1 Expressions for Design of Plan Forms
5.8.2 Comparison of Different Optimum Design

References

6 Detailed Analysis of the Joukowsky Model

6.1 Background
6.2 Basic Equations
6.3 Results and Discussion
6.4 Inherent Upper Limits from the Momentum Equations
6.5 A Likely Explanation of the High Power Coefficient at Small Tip Speed Ratios
6.6 Rotor-Induced Vortex Breakdown
6.7 Navier–Stokes Simulations of the Joukowsky Rotor at Small Tip Speed Ratios
6.8 Design and Test of Joukowsky Rotor at Small Tip Speed Ratios

References

7 Blade-Element/Momentum Theory

7.1 Basics of the ‘Standard’ Blade-Element/Momentum Theory
7.2 Engineering Modifications
7.2.1 Tip Correction
7.2.2 Correction for Heavily Loaded Rotors
7.2.3 Yaw Correction
7.2.4 Dynamic Wake
7.2.5 Airfoil Data
7.3 Alternative Formulations of the BEM Theory
7.3.1 The Approach by Glauert
7.3.2 Alternative Model 1
7.3.3 Alternative Model 2
7.3.4 Alternative Model 3
7.3.5 Overview of the Models

References
General Momentum Theory for Horizontal Axis Wind Turbines
Sørensen, J.N.
2016, XI, 194 p., Hardcover
ISBN: 978-3-319-22113-7