Contents

Part I High Performance Computing (HPC) with the Message Passing Interface (MPI)

1 A Glance at High Performance Computing (HPC) 3
 1.1 What is High Performance Computing (HPC)? 3
 1.2 Why Do We Need HPC? 4
 1.3 Big Data: The Four Vs (Volume, Variety, Velocity, Value) .. 5
 1.4 Parallel Programming Paradigms: MPI and MapReduce 6
 1.5 Granularity: Fined-Grained Versus Coarse-Grained Parallelism .. 6
 1.6 Architectures for Supercomputing: Memory and Network 7
 1.7 Speedup ... 11
 1.7.1 Scalability and Iso-efficiency Analysis 11
 1.7.2 Amdahl’s Law: Characterizing the Asymptotic Speedup for Fixed Data-Size Problems 12
 1.7.3 Gustafson’s Law: Scaled Speedup, Increasing Data Size with Resources 14
 1.7.4 Simulating Parallel Machines on Sequential Computers ... 15
 1.7.5 Big Data and Parallel Inputs/Outputs (I/O) 16
 1.8 Eight Common Fallacies on Distributed Systems 17
 1.9 Notes and References .. 19
 1.10 Summary ... 19
 1.11 Exercises ... 20

2 Introduction to MPI: The Message Passing Interface 21
 2.1 MPI for Parallel Programming: Communicating with Messages 21
 2.2 Parallel Programming Models, Threads and Processes 22
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.3</td>
<td>Global Communications Between Processes</td>
<td>23</td>
</tr>
<tr>
<td>2.3.1</td>
<td>Four Basic MPI Primitives: Broadcast, Gather, Reduce, and Total Exchange</td>
<td>24</td>
</tr>
<tr>
<td>2.3.2</td>
<td>Blocking Versus Non-blocking and Synchronous Versus Asynchronous Communications</td>
<td>26</td>
</tr>
<tr>
<td>2.3.3</td>
<td>Deadlocks from Blocking Communications</td>
<td>28</td>
</tr>
<tr>
<td>2.3.4</td>
<td>Concurrency: Local Computations Can Overlap with Communications</td>
<td>32</td>
</tr>
<tr>
<td>2.3.5</td>
<td>Unidirectional Versus Bidirectional Communications</td>
<td>33</td>
</tr>
<tr>
<td>2.3.6</td>
<td>Global Computations in MPI: Reduce and Parallel Prefix (Scan)</td>
<td>33</td>
</tr>
<tr>
<td>2.3.7</td>
<td>Defining Communication Groups with Communicators</td>
<td>35</td>
</tr>
<tr>
<td>2.4</td>
<td>Synchronization Barriers: Meeting Points of Processes</td>
<td>37</td>
</tr>
<tr>
<td>2.4.1</td>
<td>A Synchronization Example in MPI: Measuring the Execution Time</td>
<td>37</td>
</tr>
<tr>
<td>2.4.2</td>
<td>The Bulk Synchronous Parallel (BSP) Model</td>
<td>38</td>
</tr>
<tr>
<td>2.5</td>
<td>Getting Started with the MPI: Using OpenMPI</td>
<td>39</td>
</tr>
<tr>
<td>2.5.1</td>
<td>The “Hello World” Program with MPI C++</td>
<td>39</td>
</tr>
<tr>
<td>2.5.2</td>
<td>Programming MPI with the C Binding</td>
<td>41</td>
</tr>
<tr>
<td>2.5.3</td>
<td>Using MPI with C++ Boost</td>
<td>41</td>
</tr>
<tr>
<td>2.6</td>
<td>Using MPI with OpenMP</td>
<td>42</td>
</tr>
<tr>
<td>2.6.1</td>
<td>Programming MPI with the Python Binding</td>
<td>43</td>
</tr>
<tr>
<td>2.7</td>
<td>Main Primitives in MPI</td>
<td>44</td>
</tr>
<tr>
<td>2.7.1</td>
<td>MPI Syntax for Broadcast, Scatter, Gather, Reduce and Allreduce</td>
<td>44</td>
</tr>
<tr>
<td>2.7.2</td>
<td>Other Miscellaneous MPI Primitives</td>
<td>45</td>
</tr>
<tr>
<td>2.8</td>
<td>Communications on the Ring Topology with MPI</td>
<td>47</td>
</tr>
<tr>
<td>2.9</td>
<td>Examples of MPI Programs with Their Speed-Up Analysis</td>
<td>48</td>
</tr>
<tr>
<td>2.9.1</td>
<td>The Matrix–Vector Product in MPI</td>
<td>49</td>
</tr>
<tr>
<td>2.9.2</td>
<td>Example of MPI Reduce Operations: Computing the Factorial and Minimum Value of an Array</td>
<td>50</td>
</tr>
<tr>
<td>2.9.3</td>
<td>Approximating π with Monte-Carlo Stochastic Integration</td>
<td>52</td>
</tr>
<tr>
<td>2.9.4</td>
<td>Monte-Carlo Stochastic Integration for Approximating the Volume of a Molecule</td>
<td>54</td>
</tr>
<tr>
<td>2.10</td>
<td>References and Notes</td>
<td>59</td>
</tr>
<tr>
<td>2.11</td>
<td>Summary</td>
<td>60</td>
</tr>
<tr>
<td>2.12</td>
<td>Exercises.</td>
<td>60</td>
</tr>
<tr>
<td>References</td>
<td></td>
<td>62</td>
</tr>
</tbody>
</table>
3 Topology of Interconnection Networks .. 63

3.1 Two Important Concepts: Static Versus Dynamic Networks, and Logic Versus Physical Networks .. 63

3.2 Interconnection Network: Graph Modeling 64

3.3 Some Attributes Characterizing Topologies 65

3.3.1 Degree and Diameter .. 65

3.3.2 Connectivity and Bisection .. 65

3.3.3 Criteria for a Good Network Topology 66

3.4 Common Topologies: Simple Static Networks 66

3.4.1 Complete Graphs: The Cliques 66

3.4.2 Star-Shaped Graph .. 67

3.4.3 Rings and Chordal Rings .. 67

3.4.4 Meshes (Grids) and Torii (Plural of Torus) 68

3.4.5 The 3D Cube and the Cycle Connected Cube (CCC) 69

3.4.6 Trees and Fat Trees .. 69

3.5 Topology of Hypercubes and Node Labeling Using the Gray Code ... 71

3.5.1 Recursive Construction of the Hypercube 71

3.5.2 Numbering Hypercube Nodes Using the Gray Code 72

3.5.3 Generating Gray Codes in C++ 73

3.5.4 Converting Gray Codes to and from Binary Codes 75

3.5.5 Cartesian Product of Graphs 76

3.6 Some Communication Algorithms on Topologies 78

3.6.1 Communication Primitives on the Oriented Ring 79

3.6.2 Broadcasting on the Hypercube: Tree-Like Communications 86

3.7 Embedding (Logical) Topologies in Other (Physical) Topologies 91

3.8 Complex Regular Topologies .. 92

3.9 Interconnection Network on a Chip 93

3.10 Notes and References ... 96

3.11 Summary .. 96

References ... 97

4 Parallel Sorting .. 99

4.1 Quick Review of Sequential Sorting 99

4.1.1 Main Sequential Sorting Algorithms 99

4.1.2 Complexity of Sorting: A Lower Bound 101

4.2 Parallel Sorting by Merging Lists 102

4.3 Parallel Sorting Using Ranks .. 102

4.4 Parallel Quicksort .. 104

4.5 HyperQuickSort ... 108

4.6 Parallel Sort Regular Sampling (PSRS) 109
4.7 Sorting on Grids: **ShearSort** .. 111
4.8 Sorting Using Comparison Network: Odd–Even Sorting 113
4.9 Merging Sorted Lists Using a Comparison Network 115
4.10 The Bitonic Merge Sort ... 116
4.11 Notes and References .. 118
4.12 Summary .. 120
4.13 Exercises .. 120

References .. 120

5 **Parallel Linear Algebra** .. 121

5.1 Distributed Linear Algebra 121
 5.1.1 Linear Algebra for Data Science 121
 5.1.2 Classic Linear Algebra 125
 5.1.3 The Matrix–Vector Product: $y = Ax$ 126
 5.1.4 Data Patterns for Parallelism 127

5.2 Matrix–Vector Product on the Topology of the Oriented Ring 128

5.3 Matrix Product on the Grid: The Outer Product Algorithm 134

5.4 Matrix Products on the Topology of the 2D Torus 134
 5.4.1 Cannon’s Algorithm 136
 5.4.2 Fox’s Algorithm: The Broadcast-Multiply-Roll Matrix Product 138
 5.4.3 Snyder’s Algorithm: Accumulating Local Products on the Diagonal 141
 5.4.4 Comparisons of Cannon’s, Fox’s and Snyder’s Algorithms 143

5.5 Notes and References .. 143
5.6 Summary .. 144
5.7 Exercises .. 144

References .. 144

6 **The MapReduce Paradigm** 147

6.1 The Challenge of Processing Big Data Fast! 147
6.2 The Basic Principle of MapReduce 148
 6.2.1 Map and Reduce Processes 148
 6.2.2 A Historical Perspective: Map and Reduce in Functional Programming Languages 149

6.3 Data Types and the MapReduce Mechanism 150
6.4 A Complete Example of MapReduce in C++ 152
6.5 Launching MapReduce Jobs and Overview of the MapReduce Architecture 154
6.6 Using MapReduce in MPI with the MR-MPI Library 156
6.7 Notes and References .. 158
6.8 Summary .. 159

References .. 160
8.2 Strategies to Define a Good Linkage Distance 198
 8.2.1 A Generic Algorithm for Agglomerative
 Hierarchical Clustering 199
 8.2.2 Choosing the Appropriate Elementary Distance
 Between Elements 200
8.3 Ward Merging Criterion and Centroids 203
8.4 Retrieving Flat Partitions from Dendrograms 204
8.5 Ultra-metric Distances and Phylogenetic Trees 204
8.6 Notes and References 206
8.7 Summary .. 207
8.8 Exercises ... 208
References .. 208
9 Supervised Learning: Practice and Theory of Classification
 with the k-NN Rule 213
 9.1 Supervised Learning 213
 9.2 Nearest Neighbor Classification: NN-Rule 213
 9.2.1 Optimizing Euclidean Distance Computation
 for Nearest Neighbor Queries 214
 9.2.2 Nearest Neighbor (NN) Rules and Voronoi
 Diagrams ... 215
 9.2.3 Enhancing the NN-Rule with the k-NN Rule
 by Voting! .. 216
 9.3 Evaluating the Performance of Classifiers 217
 9.3.1 Misclassification Error Rate 218
 9.3.2 Confusion Matrices and True/False Positive/
 Negative .. 218
 9.4 Precision, Recall and F-Score 219
 9.5 Statistical Machine Learning and Bayes' Minimal
 Error Bound ... 220
 9.5.1 Non-parametric Probability Density Estimation 220
 9.5.2 Probability of Error and Bayes' Error 222
 9.5.3 Probability of Error for the k-NN Rule 223
 9.6 Implementing Nearest Neighbor Queries on a Computer
 Cluster ... 224
 9.7 Notes and References 224
 9.8 Summary ... 227
 9.9 Exercises ... 227
References .. 229
10 Fast Approximate Optimization in High Dimensions
with Core-Sets and Fast Dimension Reduction

10.1 Approximate Optimization for Large-Scale Data-Sets

10.1.1 An Example that Illustrates the Needs for High Dimensions

10.1.2 Some Distance Phenomena in High Dimensions

10.1.3 Core-Sets: From Big Data-Sets to Tiny Data-Sets!

10.2 Core-Sets (Coresets, Core sets): Definition

10.3 Core-Sets for the Smallest Enclosing Balls

10.4 A Simple Iterative Heuristic for Approximating the Smallest Enclosing Ball

10.4.1 Convergence Proof

10.4.2 Small Enclosing Balls and Good Margin Linear Separators for SVMs

10.5 Core-Sets for k-Means

10.6 Fast Dimension Reduction via Random Projection Matrices

10.6.1 The Curse of Dimensionality

10.6.2 Two Illustrating Examples of High-Dimensional Tasks

10.6.3 Linear Dimension Reduction

10.6.4 The Johnson–Lindenstrauss’ Theorem

10.6.5 Random Projection Matrices

10.7 Notes and References

10.8 Summary

10.9 Exercises

References

11 Parallel Algorithms for Graphs

11.1 Finding Dense(st) Sub-graphs in Large Graphs

11.1.1 Problem Statement

11.1.2 Densest Sub-graph Complexity and a Simple Greedy Heuristic

11.1.3 A Parallel Heuristic for the Densest Sub-graph

11.2 Testing (Sub)graph Isomorphisms

11.2.1 General Principles of Enumerating Algorithms

11.2.2 Ullman’s Algorithm to Test the Sub-graph Isomorphism

11.2.3 Parallelizing Enumerating Algorithms

11.3 Notes and Discussions

11.4 Summary

11.5 Exercises

References
Appendix A: Written Exam (3 h) .. 261

Appendix B: SLURM: A Resource Manager and Job Scheduler on Clusters of Machines .. 273

Index .. 277
Introduction to HPC with MPI for Data Science
Nielsen, F.
2016, XXXIII, 282 p. 101 illus. in color., Softcover
ISBN: 978-3-319-21902-8