Contents

1 Introduction ... 1
1.1 What Is an Oscillatory-Base Manipulator? 1
1.2 Previous Works and Contents of the Monograph 4

2 Problem Definition, Dynamical Model Formulation 7
2.1 Introduction .. 7
2.2 Problem Definition ... 7
2.3 Local-Coordinate and Global-Coordinate Problems 9
2.4 Dynamical Model Formulation 10
2.4.1 Dynamical Model of an OBM 10
2.4.2 Base Oscillation Model .. 12

3 Experimental Apparatus and Analysis on Parameter Variation
Due to Payload ... 15
3.1 Introduction .. 15
3.2 Experimental OBM .. 15
3.3 Analysis on Parameter Variation Due to Payloads 17

4 Motion Control Using an \mathcal{H}_∞-Control-Based Approach 21
4.1 Introduction ... 21
4.2 \mathcal{H}_∞ Control and μ-Analysis and Synthesis 22
4.2.1 Small-Gain Theorem and Linear
Fractional Transformations ... 23
4.2.2 \mathcal{H}_∞ Control Standard Problems 24
4.2.3 Structured Uncertainties and μ-Analysis
and Synthesis .. 26
4.2.4 TDOF Control System Structure 27
4.3 Extended Matrix Polytopes for Model
Uncertainty Representation ... 28
4.3.1 Model Uncertainties and Extended Matrix Polytopes 28
4.3.2 LFT Representation of an Extended Matrix Polytope 30
4.4 Control Design and Analysis

4.4.1 Nonlinear State Feedback and Virtual Linear Plant

4.4.2 Extended Matrix-Polytope-Based Model Uncertainty Representation for the Inertia Matrix

4.4.3 Sensitivity Function Shaping Strategy Using Linear State-Feedback Control

4.4.4 Generalized Plant for \mathcal{H}_∞ Control Design and Analysis

4.4.5 \mathcal{H}_∞ Controller Synthesis and Robustness Analysis

4.5 Conclusions

5 Simulations and Experiments for the \mathcal{H}_∞-Control-Based Approach

5.1 Introduction

5.2 Simulations and Experiments (Nominal-Case Performance)

5.2.1 Base Oscillation

5.2.2 Global Coordinates

5.2.3 PID Control

5.2.4 Attitude Control

5.2.5 Position Control

5.2.6 Simulation Results

5.2.7 Influence of Sensor Error

5.2.8 Experimental Results and Comparison with PID Control

5.3 Simulations and Experiments (Robust Performance)

5.3.1 Robust Control Simulations and Experiments

5.3.2 Results

5.4 Conclusions

6 Motion Control Using a Sliding-Mode-Control-Based Approach

6.1 Introduction

6.2 Sliding-Mode Control

6.3 Sliding-Mode Control via Rotating Sliding Surface with Variable-Gain Integral Control

6.3.1 Control System Design of SMC-RSSI

6.3.2 Control System Design Example

6.4 Stability Analysis of RSSI

6.5 Simulations

6.5.1 Simulations in the Nominal Case

6.5.2 Simulations in the Robust Control Case

6.6 Conclusions
Base Oscillation Estimation via Multiple \mathcal{H}_∞ Filters

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.1</td>
<td>Introduction</td>
<td>123</td>
</tr>
<tr>
<td>7.2</td>
<td>Estimation Algorithm</td>
<td>124</td>
</tr>
<tr>
<td>7.2.1</td>
<td>FFT-Based Linear State-Equation Model</td>
<td>125</td>
</tr>
<tr>
<td>7.2.2</td>
<td>Kalman Filtering Algorithm</td>
<td>126</td>
</tr>
<tr>
<td>7.2.3</td>
<td>\mathcal{H}_∞ Filtering Algorithm</td>
<td>127</td>
</tr>
<tr>
<td>7.2.4</td>
<td>Method of Selectively Combining Multiple \mathcal{H}_∞ and Kalman Filters</td>
<td>128</td>
</tr>
<tr>
<td>7.2.5</td>
<td>Integral with Drift Error Compensation</td>
<td>129</td>
</tr>
<tr>
<td>7.3</td>
<td>Ship Oscillation Motions</td>
<td>130</td>
</tr>
<tr>
<td>7.3.1</td>
<td>Ocean Wave Spectrum Model</td>
<td>130</td>
</tr>
<tr>
<td>7.3.2</td>
<td>Ship Dynamical Model</td>
<td>130</td>
</tr>
<tr>
<td>7.4</td>
<td>Simulations</td>
<td>132</td>
</tr>
<tr>
<td>7.4.1</td>
<td>Conditions</td>
<td>132</td>
</tr>
<tr>
<td>7.4.2</td>
<td>Results</td>
<td>133</td>
</tr>
<tr>
<td>7.5</td>
<td>Conclusions</td>
<td>136</td>
</tr>
</tbody>
</table>

References 139

Index 145
Robust Motion Control of Oscillatory-Base Manipulators
H\(_{\infty}\)-Control and Sliding-Mode-Control-Based Approaches
Toda, M.
2016, XII, 147 p. 97 illus., Softcover
ISBN: 978-3-319-21779-6