Contents

1 Accessible Parameters for Satellite MCW Radiometers and Their Relationship with Ocean–Atmosphere Interactions ... 1
 1.1 Methods for Surface Heat Flux Analysis Using Radiometric Measurements ... 1
 1.1.1 Traditional Approach .. 1
 1.1.2 Alternative Approach .. 4
 1.2 Parameters of Heat Interchange in the SOA, Which are Directly Determined by Satellite MCW Radiometry 7
 1.2.1 History of Satellite MCW Radiometry Development 7
 1.2.2 Relationship Between Natural MCW Radiation and the Ocean Surface Temperature 8
 1.2.3 Estimating the Accuracy of Ocean Surface Temperature Determinations .. 11
 1.3 Potential of Satellite MCW Radiometric Methods for Determining Meteorological Parameters of the Near-Surface Atmosphere ... 13
 1.3.1 Climatic and Seasonal Scales .. 13
 1.3.2 Synoptic Scales ... 17
 1.4 Conclusion .. 19
References ... 20

2 Modeling the SOA’S MCW and IR Radiation Characteristics and Their Relationship with Surface Heat Fluxes at Synoptic Time Scales ... 25
 2.1 Modeling the SOA’s Brightness Temperature with ATLANTEX-90 Vessel Experiment Data ... 25
 2.1.1 Description of the Initial Data .. 25
 2.1.2 Model of the SOA’s Natural Radiation with Microwaves and Infrareads ... 26
2.2 SOA Brightness Temperature Contrasts and Their Comparison with Heat Fluxes .. 28
 2.2.1 Calculations of SOA Brightness Temperature at Microwaves ... 28
 2.2.2 Relationship Between the SOA’s Brightness Temperature and Heat Fluxes 29
 2.2.3 Computation of the Brightness Temperature Response to the Heat Fluxes Variations 33

2.3 Analysis of the Factors Forming the Relationship Between Natural MCW Radiation and Heat Characteristics of the SOA ... 35
 2.3.1 Parameters and Mechanisms that Form Relationships Between the Brightness Temperature and Surface Heat Fluxes ... 35
 2.3.2 Response of the SOA Heat and MCW Radiation Characteristics on Midlatitude Cyclone Passage 39

2.4 Conclusions ... 41

References ... 42

3 Search for the Direct Relationship Between Heat Fluxes and the Parameters Associated with the SOA Brightness Temperature ... 43

3.1 Analysis of the Relationships Between Total Water Vapor Content in the Atmosphere and Heat Fluxes (ATLANTEX-90 Experiment) ... 43
 3.1.1 Problem Statement ... 43
 3.1.2 Analysis of Meteorological and Aerologic Data from the ATLANTEX-90 Experiment 44
 3.1.3 Reconstruction of the Bulk Formulas ... 46

3.2 The Role of Near-Surface Wind in Heat Flux Determinations ... 49
 3.2.1 Specific Objective .. 49
 3.2.2 Results of the Analysis on the Influence of the Wind Factor .. 49

3.3 Relationships Between Monthly Mean Ocean–Atmosphere Temperature Differences and MCW and IR Radiation Intensity of the SOA ... 51
 3.3.1 Statement of the Problem .. 51
 3.3.2 Approximations and Limitations Used .. 52
 3.3.3 Relationships Between the SOA’s Natural Radiation and the Near-Surface Atmosphere Characteristics .. 53
 3.3.4 Relationships Between Monthly Mean Differences of the Ocean Surface and Atmosphere Near-Surface Temperatures and the Intensity of SOA’s Natural Radiation .. 55
3.4 Brightness Temperature as a Characteristic of Seasonal and Interannual Dynamics of Ocean–Atmosphere Heat Interaction
3.4.1 t_s, t_a Loops as Characteristics of Heat Exchange Between the Ocean and Atmosphere
3.4.2 Using Brightness Temperature Loops to Estimate Annual Heat Fluxes
3.5 Conclusion
References

4 Influence of Vertical Heat Transfer on the Relationships Between the SOA MCW and IR Radiation Intensity and Surface Heat Fluxes: Modeling
4.1 Model of Heat Interaction Between the Oceanic and Atmospheric Boundary Layers
4.2 Parameterized Radiation Model of the SOA for Microwaves and Infrareads
4.3 Numerical Analysis of the Dynamics of Thermal and Electromagnetic Fluxes and Their Correlations
4.4 Conclusion
References

5 Influence of Horizontal Heat Transfer in the Atmosphere Boundary Layer on the Relationship Between the SOA’s Brightness Temperature and Surface Heat Fluxes: Modeling
5.1 Dependence of the Atmosphere Boundary Layer’s Meteorological Structure on Horizontal Heat Transfer
5.1.1 Objectives and Approach
5.1.2 Heat and Moisture Transfer Model
5.1.3 Description of the Numerical Experiment
5.1.4 Results of the Computation of the ABL Vertical Meteorological Structure
5.2 Response of the SOA’s Brightness Temperature to ABL Temperature Changes and Humidity Characteristics
5.3 Conclusion
References

6 Experimental Studies of the Relationships Between SOA Radiation and Heat Characteristics in the Synoptic Range of Time Scales
6.1 Laboratory Study of the Response of Natural MCW and IR Radiation from the Water Surface to Its Upper Layer Enthalpy
6.1.1 Matter of the Study
6.1.2 Description of the Experiment and Its Results
6.2 Experimental Studies of the Relationships Between the Brightness Temperature, Heat, Moisture, and Impulse Fluxes with Satellite Data and Vessel Measurements

<table>
<thead>
<tr>
<th>Subsection</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.2.1 SSM/I Radiometer of the DMSP Satellites</td>
<td>88</td>
</tr>
<tr>
<td>6.2.2 Results of Modeling Synoptic Variations of SOA Brightness Temperatures with Satellite Measurements</td>
<td>90</td>
</tr>
<tr>
<td>6.2.3 Relationships Between the SSM/I-Derived Brightness Temperatures with the Near-Surface Fluxes of Heat and Impulse</td>
<td>93</td>
</tr>
<tr>
<td>6.2.4 Stability of the Relationships Between Satellite and Vessel Estimates of Heat and Impulse Fluxes</td>
<td>95</td>
</tr>
</tbody>
</table>

6.3 Experimental Studies of Relationships Between the Brightness Temperatures and SOA Parameters in Front Zones

<table>
<thead>
<tr>
<th>Subsection</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.3.1 Synoptic Variability of the SOA Parameters and Brightness Temperature in the Subpolar Hydrological Front</td>
<td>98</td>
</tr>
<tr>
<td>6.3.2 Features of Atmospheric Dynamics Observed in the SHF Region</td>
<td>100</td>
</tr>
<tr>
<td>6.3.3 Relationship of the Brightness Temperature and Wind Direction in the SHF</td>
<td>102</td>
</tr>
</tbody>
</table>

6.4 Conclusions

<table>
<thead>
<tr>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>107</td>
</tr>
</tbody>
</table>

7 Seasonal and Interannual Changeability of Heat Fluxes in the North Atlantic as Seen from the SSM/I Radiometer

<table>
<thead>
<tr>
<th>Subsection</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.1 Satellite-Derived Estimates of Monthly Mean Brightness Temperature, Total Water Vapor of the Atmosphere, and Wind Speed</td>
<td>109</td>
</tr>
<tr>
<td>7.1.1 Monthly Mean Brightness Temperatures Observed with the SSM/I Radiometer over the North Atlantic</td>
<td>109</td>
</tr>
<tr>
<td>7.1.2 Monthly Mean SOA Parameters Retrieved with the SSM/I Radiometer over the North Atlantic and Their Accuracy</td>
<td>111</td>
</tr>
<tr>
<td>7.2 Estimates of Monthly Mean Heat Fluxes in the North Atlantic Using Data from the F-08 Satellite (DMSP)</td>
<td>114</td>
</tr>
<tr>
<td>7.2.1 Validation of the Monthly Mean Heat Fluxes Estimated from Satellites with Archival Data</td>
<td>114</td>
</tr>
<tr>
<td>7.2.2 Disagreements Between Satellite and Archival Data</td>
<td>115</td>
</tr>
<tr>
<td>7.3 Estimates of Interannual Variability of Surface Heat Fluxes in the North Atlantic with DMSP SSM/I Radiometric Data</td>
<td>116</td>
</tr>
<tr>
<td>7.3.1 Problem Statement</td>
<td>116</td>
</tr>
<tr>
<td>7.3.2 Initial Satellite and Oceanic Archival Data</td>
<td>117</td>
</tr>
</tbody>
</table>
8 Fluxes of Sensible Heat, Latent Heat, Impulse, and Atmospheric Water Vapor over the North Atlantic from the EOS Aqua AMSR-E Radiometer

8.1 Spatial and Seasonal Variability of Monthly Mean Heat, Moisture, Impulse Fluxes, and Atmospheric Water Vapor in the North Atlantic from the AMSR-E Radiometer

8.1.1 Satellite Archives

8.1.2 Technique for Determining the Monthly Mean Fluxes of Sensible Heat, Latent Heat, and Impulse Fluxes from AMSR-E Radiometric Data

8.1.3 Variability of Fields of Monthly Mean Sensible Heat, Latent Heat, and Impulse Fluxes

8.1.4 Field Variability of the Atmospheric Monthly Mean Water Vapor Content in the North Atlantic

8.2 Brightness Temperature as a Characteristic of Ocean-Atmosphere Heat Interaction in Areas of the Gulf Stream and North Atlantic Current

8.2.1 Analysis of Seasonal Variability of the Brightness Temperature in Areas H and D of the Gulf Stream

8.2.2 Annual Brightness Temperature Cycles (Loops) in Areas H and D of the Gulf Stream

8.3 Conclusion

References

9 Analysis of the Dynamics of SOA Parameters in Areas of Tropical Cyclone Activity

9.1 Dynamics of Parameters of the Ocean Surface and Near-Surface Atmosphere in the Gulf of Mexico During Tropical Cyclones Katrina and Humberto

9.1.1 Matter and Tasks of the Study

9.1.2 Dynamics of Meteorological Parameters Measured from Stations SMKF1 and 42019

9.1.3 Dynamics of the Ocean Surface Temperature, Heat, Moisture, and Impulse Fluxes in Areas of Activity of TCs Katrina and Humberto

9.1.4 Spatial and Temporal Dynamics of the SOA Brightness Temperature Along the Trajectory of TC Katrina
9.2 Dynamics of the Atmospheric Meteorological Characteristics at the Beginning of Tropical Cyclones 150
 9.2.1 Technique for Retrieval of the Atmospheric Temperature and Humidity from Satellites and Buoys 150
 9.2.2 Some Results of Analysis of the Atmospheric Temperature and Humidity Dynamics at Various Horizons 151
 9.2.3 Some Results of an Analysis of the Atmosphere’s Integral Characteristics Dynamics 152
9.3 Conclusion ... 156
References ... 159

10 Comparative Analysis of Prestorm Situations in the Florida Strait and Golubaya Bay in the Black Sea 161
 10.1 Objectives of the Study ... 161
 10.2 Dynamics of the Near-Surface and Upper Atmosphere Layers Near the SMKF1 Station Before TC Katrina’s Arrival 162
 10.3 Dynamics of Characteristics of the Near-Surface and Upper Atmosphere Layers in Golubaya Bay Before Sea Storm Coming 166
10.4 Conclusion ... 170
References ... 171

11 Modern Satellite MCW Radiometric Means for Analyzing Ocean-Atmosphere Interactions ... 173
 11.1 History and General Information ... 173
 11.2 Review of Recent MCW Radiometric Complexes 175
 11.2.1 DMSP Radiometric Complex ... 175
 11.2.2 SSMIS—Special Sensor Microwave Imager/Sounder 175
 11.2.3 TRMM Radiometric Complex ... 177
 11.2.4 Coriolis Radiometric Complex ... 177
 11.2.5 GCOM-W1 Radiometric Complex ... 178
 11.2.6 R MTVZA-GY Adiometric Complex of Russian Satellite Meteor-M No. 2 ... 179
 11.3 Informational Aspects in Studying the Characteristics of the Ocean–Atmosphere Heat and Dynamic Interaction with MCW Radiometric Methods 182
 11.3.1 Processing Remotely Sensed Data in Centers for the Archiving and Dissemination of Information 182
11.3.2 Peculiarities of Processing Satellite MCW Radiometric Data for Studies of Heat and Dynamic Processes in the SOA Interface 184
11.3.3 Global Archive OAFlux: Daily and Monthly Mean Fluxes and Parameters of the Ocean and Atmosphere 184
11.3.4 Global Archive HOAPS: Monthly Mean Fluxes and Parameters of the Ocean and Atmosphere 185
11.3.5 Global Archive J-OFURO: Monthly Mean Fluxes and Parameters of the Ocean and Atmosphere 186
11.3.6 Archival Satellite MCW Data ... 186
11.4 Conclusion .. 187
References .. 187

Key Terms ... 189
Abbreviations ... 191
Index ... 193
Microwave Radiation of the Ocean-Atmosphere
Boundary Heat and Dynamic Interaction
Grankov, A.G.; Milshin, A.A.
2016, XXI, 193 p. 103 illus., 14 illus. in color., Hardcover
ISBN: 978-3-319-21646-1