Contents

1 Introduction ... 1
 1.1 Rationale for the Hybrid Way 1
 1.2 Spin Ensemble Quantum Memory Principle 4
 1.3 Storing a Qubit State in a Spin Ensemble (Write) 6
 1.4 Retrieving Few-Photon Fields Stored in a Spin Ensemble (Read) ... 10
 1.5 NV Clock Transitions for Long Coherent Storage 13
 1.6 Towards an Operational Quantum Memory 14
 References .. 16

2 Background ... 19
 2.1 Superconducting Circuits and Microwave Engineering 19
 2.1.1 Superconducting Resonators 19
 2.1.2 Josephson Junction Based Circuits 29
 2.1.3 Circuit Quantum Electrodynamics 39
 2.2 NV Center Spins in Diamond ... 45
 2.2.1 Structure ... 45
 2.2.2 The NV Center Spin Qubit .. 46
 2.2.3 Coherence Times ... 51
 2.3 Coupling Ensembles of NV Center Spins to Superconducting Circuits .. 53
 2.3.1 Single Spin-Resonator Coupling 53
 2.3.2 Spin Ensemble-Resonator Coupling: Collective Effects 54
 2.3.3 The Resonator-Spins System in the Low-Excitation Regime 65
 2.3.4 The Resonator-Spins System Under Strong Drive Powers 74
 References .. 75
3 Proposal: A Spin Ensemble Quantum Memory for Superconducting Qubits

3.1 Spin-Based Quantum Memory

3.1.1 Motivations

3.1.2 Spin Ensemble Quantum Memory: Principles

3.2 Spin Ensemble Quantum Memory Protocol

3.2.1 The Write Step: Storage of N Quantum States $|\psi_1\rangle \ldots |\psi_n\rangle$

3.2.2 The Read Step: On-Demand Retrieval of $|\psi_i\rangle$

3.2.3 The Full Quantum Memory Protocol

3.3 Simulations

References

4 Experiment 1 (Write): Coherent Storage of Qubit States into a Spin Ensemble

4.1 State of the Art and Principle of the Experiment

4.1.1 State of the Art

4.1.2 Strong Coupling of NVs to a Superconducting Resonator

4.1.3 Principle of the Experiment

4.2 Experimental Realization

4.2.1 The Hybrid Quantum Circuit

4.2.2 Measurement Setup

4.3 Operating the Hybrid Quantum Circuit

4.3.1 Superconducting Circuit Characterization

4.3.2 Transferring Qubit States to the Bus Resonator

4.3.3 Coupling the NV Spin Ensemble to the Bus Resonator

4.4 Storage of Qubit States into a NV Spin Ensemble

4.4.1 Storing a Single Photon from the Qubit into the Spin Ensemble

4.4.2 Storing a Coherent Superposition from the Qubit to the Spin Ensemble

4.4.3 Entanglement Between the Spin Ensemble and the Resonator

4.5 Conclusions on Experiment 1: The Write Step

References

5 Experiment 2 (Read): Multimode Retrieval of Few Photon Fields from a Spin Ensemble

5.1 Principle of the Experiment

5.2 Experimental Realization

5.2.1 The Hybrid Quantum Circuit

5.2.2 Measurement Setup
Appendix A: Fabrication 223
Appendix B: NV Center Distribution 225
Curriculum Vitae 229
Towards a Spin-Ensemble Quantum Memory for Superconducting Qubits
Design and Implementation of the Write, Read and Reset Steps
Grèzes, C.
2016, XIV, 231 p., Hardcover
ISBN: 978-3-319-21571-6