Contents

Part I Theory of Heusler Compounds

1 Theory of Heusler and Full-Heusler Compounds 3
 Iosif Galanakis
 1.1 Introduction ... 3
 1.2 Semi-Heusler Compounds 6
 1.2.1 Band Structure of Semi-Heusler Compounds 6
 1.2.2 Origin of the Gap 9
 1.2.3 Role of sp-Elements 11
 1.2.4 Slater-Pauling Behavior 12
 1.3 Full Heusler Compounds 14
 1.3.1 Electronic Structure 14
 1.3.2 Origin of the Gap in Full-Heusler Alloys 16
 1.3.3 Slater-Pauling Behavior of the Full-Heusler Alloys . 17
 1.4 Inverse Full-Heusler Compounds 19
 1.5 LiMgPdSn-Type Heusler Compounds 20
 1.6 Disordered Quaternary Heusler Alloys 22
 1.7 Half-Metallic Antiferromagnets 23
 1.8 Magnetic Semiconductors 24
 1.9 Special Topics ... 26
 1.9.1 Exchange Constants and Curie Temperature 26
 1.9.2 Defects and Vacancies 27
 1.9.3 Surfaces and Interfaces 28
 1.10 Summary and Outlook 28
 References ... 30

2 Basics and Prospectives of Magnetic Heusler Compounds 37
 C. Felser, L. Wollmann, S. Chadov, G.H. Fecher and S.S.P. Parkin
 2.1 Basics and Prospectives of Magnetic Heusler Compounds 37
 References ... 46
Part II Properties

3 Spin-Resolved Photoemission Spectroscopy of the Heusler Compound Co$_2$MnSi .. 51
 Roman Fetzer, Martin Aeschlimann and Mirko Cinchetti
 3.1 A Short Introduction to Spin-Resolved Photoemission Spectroscopy ... 51
 3.2 SR-PES at Co-based Full Heusler Surfaces 53
 3.2.1 Spin- and Symmetry-Resolved PES at the Off-Stoichiometric Co$_2$Mn$_2$Si Surface 54
 3.3 SR-PES at the Co$_2$MnSi/MgO interface 68
 3.3.1 Low Energy SR-PES at the Off-Stoichiometric Co$_2$Mn$_2$Si/MgO Interface 70
 3.3.2 Low Energy Spin- and Symmetry-Resolved PES at the Stoichiometric Co$_2$MnSi/MgO Interface ... 76
 References. ... 82

4 Structural Order in Heusler Compounds 87
 S. Wurmehl and M. Wójcik
 4.1 Heusler Compounds—A Versatile Class of Functional Materials ... 87
 4.2 Types of Structural Order in Heusler Compounds 88
 4.3 Methods for the Investigation of (local) Order in Heusler Compounds ... 91
 4.3.1 Nuclear Magnetic Resonance Spectroscopy (NMR) .. 91
 4.3.2 Mößbauer Spectroscopy ... 91
 4.4 Examples of Structural Order in Heusler Compounds 92
 4.4.1 X$_2$YZ Heusler Compounds .. 92
 4.4.2 Heusler Compounds with Inverse Structure 97
 4.4.3 Pseudo-Ternary Heusler Compounds with 4 Elements 98
 4.4.4 Co$_2$Mn$_{1-x}$Fe$_x$Si .. 99
 4.4.5 Co$_2$Mn$_{1-x}$Fe$_x$Al ... 100
 4.4.6 Co$_2$Cr$_{1-x}$Fe$_x$Al ... 100
 4.4.7 Co$_2$Cr$_{1-x}$Fe$_x$Ga ... 101
 4.4.8 Co$_2$FeAl$_{1-x}$Si$_x$.. 101
 4.4.9 YXZ Heusler Compounds .. 102
 4.5 Summary ... 105
 References. ... 106
5 Heusler Compounds Go Nano

Judith Meyer, Niclas Teichert, Alexander Auge, Changhai Wang, Andreas Hüttten and Claudia Felser

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1 Identifying the Future Role of Heusler Nanoparticles for Applications</td>
<td>112</td>
</tr>
<tr>
<td>5.2 Nanoparticular GMR-Effect Based on Co₂FeGa Nanoparticles</td>
<td>117</td>
</tr>
<tr>
<td>5.3 The Limits for the Austenite-Martensite Transformation in Ultra-Thin Films</td>
<td>120</td>
</tr>
<tr>
<td>5.3.1 The Martensitic Transformation in Real Crystals and Thin Films</td>
<td>123</td>
</tr>
<tr>
<td>5.3.2 The Martensitic Transformation in Ultra-Thin Films</td>
<td>128</td>
</tr>
</tbody>
</table>

References: 130

6 Chemical Bonding in MgAgAs-Type Compounds

D. Bende, Yu. Grin and F.R. Wagner

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1 Crystal Structure and Structural Relations</td>
<td>133</td>
</tr>
<tr>
<td>6.2 Notions on Chemical Bonding in MgAgAs-Type Structures</td>
<td>135</td>
</tr>
<tr>
<td>6.3 Real-Space Analysis of Chemical Bonding in MgAgAs-Type Compounds of the Main-Group Elements</td>
<td>139</td>
</tr>
<tr>
<td>6.3.1 QTAIM Analysis</td>
<td>139</td>
</tr>
<tr>
<td>6.3.2 Electron Localizability Analysis</td>
<td>142</td>
</tr>
<tr>
<td>6.3.3 ELI-D/QTAIM Intersections</td>
<td>144</td>
</tr>
<tr>
<td>6.4 Bonding Analysis of Some Related Compounds</td>
<td>147</td>
</tr>
<tr>
<td>6.5 A Unified Bonding Concept</td>
<td>148</td>
</tr>
<tr>
<td>6.6 Conclusion</td>
<td>155</td>
</tr>
</tbody>
</table>

References: 155

7 Magnetic and Electronic Properties of Thin Films of Mn-Ga and Mn-Ge Compounds with Cubic, Tetragonal and Hexagonal Crystal Structures

Huseyin Kurt and J.M.D. Coey

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.1 Introduction</td>
<td>157</td>
</tr>
<tr>
<td>7.2 Crystal Structure and Magnetic Order</td>
<td>161</td>
</tr>
<tr>
<td>7.3 Thin Film Preparation</td>
<td>165</td>
</tr>
<tr>
<td>7.4 Structural Characterization</td>
<td>168</td>
</tr>
<tr>
<td>7.5 Magnetic Properties</td>
<td>173</td>
</tr>
<tr>
<td>7.6 The Zero-Moment Half-Metal</td>
<td>178</td>
</tr>
<tr>
<td>7.7 Electronic Properties</td>
<td>179</td>
</tr>
</tbody>
</table>
8 Magnetic Phase Competition in Off-Stoichiometric Martensitic Heusler Alloys: The Ni\textsubscript{50-x}Co\textsubscript{x}Mn\textsubscript{25+y}Sn\textsubscript{25-y} System 193
Kanwal Preet Bhatti, Vijay Srivastava, Daniel P. Phelan,
Sami El-Khatib, Richard D. James and Chris Leighton
8.1 Introduction 194
8.2 Sample Preparation, Structural Characterization,
and Experimental Details 198
8.3 Results and Analysis 199
8.3.1 Magnetic Phase Diagram 199
8.3.2 Neutron Powder Diffraction (NPD) 203
8.3.3 Magnetometry 205
8.3.4 Exchange Bias Effects 209
8.4 Discussion 211
8.5 Summary 214
References 215

Part III Applications

9 Heusler Alloy Films for Spintronic Devices 219
Atsufumi Hirohata, James Sagar, Luke R. Fleet
and Stuart S.P. Parkin
9.1 Spintronics 220
9.1.1 Concept 220
9.1.2 Spintronic Devices 224
9.1.3 Half-Metallic Heusler-Alloy Ferromagnets 226
9.2 Film Growth 229
9.2.1 Epitaxial Films 229
9.2.2 Polycrystalline Films 230
9.3 Crystallisation Energy 230
9.3.1 Crystallisation Temperature 230
9.3.2 Low-Temperature Crystallisation 231
9.4 Grain Volume and Magnetic Properties 237
9.4.1 Grain Volume and Crystallisation ... 237
9.4.2 Magnetic Properties with Grain Volume 237
9.4.3 Exchange Bias 239
9.5 Activation Volume 241
9.5.1 Definition 241
9.5.2 Epitaxial Films 242
9.5.3 Polycrystalline Films 244
9.6 Concluding Remarks ... 245
References ... 246

10 Thermoelectric Heusler Compounds 249
Julia Krez and Benjamin Balke
10.1 Introduction .. 249
10.2 Structure and Production of Thermoelectric Heusler Compounds ... 252
10.3 Electronic Structure of Thermoelectric Heusler Compounds ... 255
10.4 Phase Separation as a Key to a Thermoelectric High Efficiency ... 259
10.5 Summary .. 264
References ... 265

11 Thermodynamics and Energy Conversion in Heusler Alloys ... 269
Yintao Song, Chris Leighton and Richard D. James
11.1 Introduction .. 270
11.2 Multiferroic Heusler Alloys with Low Hysteresis at Phase Transformation 272
11.3 Energy Conversion Devices ... 275
11.4 Quasistatic Thermodynamic Analysis ... 278
 11.4.1 Gibbs Free Energy and Clausius-Clapeyron Relation .. 278
 11.4.2 Thermodynamic Cycles ... 281
 11.4.3 A Simplified Model ... 283
11.5 Finite-Time Performance Analysis ... 284
11.6 Other Similar Energy Conversion Methods ... 289
References ... 290

Part IV Heusler Alloy Films: Film Growth

12 Spin Polarization in Heusler Alloy Films 295
Yukiko K. Takahashi and Kazuhiro Hono
12.1 Introduction .. 295
12.2 Spin Polarization Measurements ... 296
12.3 Point Contact Andreev Reflection (PCAR) ... 297
12.4 Search for New Heusler Alloys with High Spin Polarization ... 301
 12.4.1 Fermi Level Tuning by Quaternary Substitution ... 301
 12.4.2 Co2Mn(Ge1-xGax) ... 303
 12.4.3 Co2Fe(Ge1-xGax) ... 304
12.5 Magneto-Transport Measurements Using CPP-GMR Pseudo Spinvalves ... 307
12.6 Other Quaternary Heusler Alloys .. 311
12.7 Magneto Transport Measurements Using Lateral Spin Valves 312
12.8 Spin Polarization and AMR ... 314
12.9 Summary ... 316
References ... 317

Part V Heusler Alloy Films: Magnetic Properties

13 Co$_2$Mn$_{0.6}$Fe$_{0.4}$Si: A Heusler Compound Opening
New Perspectives in Magnon Spintronics 321
Thomas Sebastian and Burkard Hillebrands
13.1 Introduction .. 321
13.2 Brief Introduction to Spin Dynamics 324
13.3 Sample Layout and Instrumentation 325
13.4 Spin-Wave Propagation in the Linear Regime 327
13.5 Spin-Wave Propagation in the Nonlinear Regime 331
13.6 Summary and Outlook ... 337
References ... 338

14 Mössbauer Analysis ... 341
Ko Mibu, Masaaki Tanaka and Kohei Hamaya
References ... 351

15 Element-Specific Magnetic and Electronic Properties
of Epitaxial Heusler Films .. 353
Hans-Joachim Elmers
15.1 Introduction .. 353
15.2 Interface and Bulk Magnetization 355
 15.2.1 Experimental Approach ... 355
 15.2.2 Magnetic Dead Layers at the Interfaces 358
 15.2.3 Magnetic Life Layers at the Surface Above T_C 361
15.3 Structural Influence on Absorption Spectra 363
 15.3.1 Dependence on Atomic Order 363
 15.3.2 Structural Phase Transitions 365
 15.3.3 Compositional Dependence 367
15.4 Magnetization Dynamics .. 370
15.5 Electronic Properties ... 372
 15.5.1 Tailoring of Band Structure 372
 15.5.2 Origin of Magnetic Anisotropies 375
 15.5.3 Electronic Correlation Effects 377
15.6 Summary and Outlook ... 379
References ... 380
Part VI Device Applications

16 Giant Magnetoresistive Devices with Half-Metallic Heusler Compounds .. 389
Yuya Sakuraba and Koki Takanashi
16.1 CIP and CPP-GMR .. 389
16.2 CPP-GMR Devices Using Half-Metallic Heusler Compounds for Magnetic Read Sensor 391
16.3 CPP-GMR Devices Using Half-Metallic Heusler Compounds for Spin-Torque Oscillator 395
16.4 AMR Effect in Half-Metallic Heusler Compounds 396
References .. 399

17 Magnetic Tunnel Junctions Using Heusler Alloys 401
Seiji Mitani
References .. 410

18 Effect of Nonstoichiometry on the Half-Metallic Character of Co₂MnSi and Its Application to the Spin Sources of Spintronic Devices ... 413
Masafumi Yamamoto and Tetsuya Uemura
18.1 Introduction .. 414
18.2 Effect of Nonstoichiometry on the Half-Metallic Character of Co₂MnSi ... 417
18.2.1 Experimental Methods 417
18.2.2 Formula Unit Composition Model 419
18.2.3 Structural Properties 421
18.2.4 Magnetic Properties 423
18.2.5 Tunneling Magnetoresistance Characteristics 426
18.3 Spin Injection into Semiconductors Using Half-Metallic Co₂MnSi .. 433
18.3.1 Experimental Methods in Spin Injection from Co₂MnSi into GaAs .. 434
18.3.2 Spin Injection Properties 435
18.3.3 Dynamic Nuclear Polarization 438
18.4 Conclusion ... 441
References .. 442

19 Exchange Bias of Polycrystalline Heusler Alloy Thin Films 445
H. Endo, T. Nakayama, J. Sagar, G. Vallejo Fernandez,
A. Hirohata and K. O’Grady
19.1 Introduction .. 445
19.2 Exchange Bias in Polycrystalline Films 448
19.3 Exchange Bias and Heusler Alloys 455
19.4 Conclusion.. 460
References.. 460

Part VII New Properties

20 Topological Insulators Within the Family of Heusler Materials 465
Stanislav Chadov and Claudia Felser
20.1 Zinc-Blende and Heusler Semiconductors 465
20.2 Closer to the Topological Phase Transition.................... 471
20.3 The Problem of the Zero Band Gap 474
20.4 Intrinsic Band Gap Mechanisms 474
References.. 476

Index... 479
Heusler Alloys
Properties, Growth, Applications
Felser, C.; Hirohata, A. (Eds.)
2016, XVIII, 486 p., Hardcover
ISBN: 978-3-319-21448-1